Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion

  • Chitrangada Acharya
  • Sudip K. Ghosh
  • S. C. Kundu


Silks fibers and films fabricated from fibroin protein of domesticated mulberry silkworm cocoon have been traditionally utilized as sutures in surgery and recently as biomaterial films respectively. Here, we explore the possibility of application of silk fibroin protein from non-mulberry silkworm cocoon as a potential biomaterial aid. In terms of direct inflammatory potential, fibroin proteins from Antheraea mylitta and Bombyx mori are immunologically inert and invoke minimal immune response. Stimulation of murine peritoneal macrophages and RAW 264.7 murine macrophages by these fibroin proteins both in solution and in the form of films assayed in terms of nitric oxide and TNFα production showed comparable stimulation as in collagen. Kinetics of adhesion of L929 murine fibroblasts, for biocompatibility evaluation, monitored every 4 h from seeding and studied over a period of 24 h, reveal A. mylitta fibroin film to be a better substrate in terms of rapid and easier cellularization. Cell viability studies by MTT assay and flow cytometric analyses indicate the ability of fibroin matrices to support cell growth and proliferation comparable to collagen for long-term culture. This matrix may have potential to serve in those injuries where rapid cellularization is essential.


L929 Cell Silk Fibroin Griess Reagent Fibroin Solution Silk Cocoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by Council of Scientific and Industrial Research and Department of Biotechnology, Government of India, New Delhi.


  1. 1.
    D.L. Guillou-Buffello, G. Hélary, M. Gindre, G. Pavon-Djavid, P. Laugier, V. Migonney, Biomaterials 26, 4197 (2005)CrossRefGoogle Scholar
  2. 2.
    G. Poste, I.J. Fidler, Nature 309, 30 (1980)Google Scholar
  3. 3.
    E.A. Vogler, Biophys. J. 53, 759 (1988)CrossRefGoogle Scholar
  4. 4.
    T.S. Hug, Assay Drug Dev. Technol. 1, 1 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Radhika, M. Babu, P.K. Sehgal, Comp. Biochem. Physiol. Part C 124, 131 (1999)Google Scholar
  6. 6.
    H. Mori, M. Tsukada, Rev. Mol. Biotechnol. 74, 95 (2000)CrossRefGoogle Scholar
  7. 7.
    R.L. Horan, K. Antle, A.L. Collette, Y. Wang, J. Huang, J.E. Moreau, V. Volloch, D.L. Kaplan, G.H. Altman, Biomaterials 26, 3385 (2005)CrossRefGoogle Scholar
  8. 8.
    L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, D.L. Kaplan, Biomaterials 26, 147 (2005)CrossRefGoogle Scholar
  9. 9.
    J.R. Mauney, T. Nguyen, K. Gillen, C. Kirker-Head, J.M. Gimble, D.L. Kaplan, Biomaterials 28, 5280 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Lee, in Silk reeling and Testing Manual, (FAO Agricultural Services Bulletin no. 136, 1999) Chapter 2Google Scholar
  11. 11.
    Y. Takasu, Y. Hiromi, T. Kozo, Biosci. Biotechnol. Biochem. 66, 2715 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Gamo, T. Inokuchi, H. Laufer, Insect Biochem. 7, 285 (1977)CrossRefGoogle Scholar
  13. 13.
    T. Tamura, S. Sakate, Insect Biochem. 18, 169 (1988)CrossRefGoogle Scholar
  14. 14.
    Y. Gotoh, S. Niimi, T. Hayakawa, T. Miyashita, Biomaterials 25, 1131 (2004)CrossRefGoogle Scholar
  15. 15.
    B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Biomaterials 25, 1289 (2004)CrossRefGoogle Scholar
  16. 16.
    R.E. Unger, M. Wolf, K. Peters, A. Motta, C. Migliaresi, C.J. Kirkpatrick, Biomaterials 25, 1069 (2004)CrossRefGoogle Scholar
  17. 17.
    A. Chiarini, P. Petrini, S. Bozzini, I.D. Pra, U. Armato, Biomaterials 24, 789 (2003)CrossRefGoogle Scholar
  18. 18.
    C. Acharya, V. Kumar, R. Sen, S.C. Kundu, Biotechnology J. 3, 2 (2008)Google Scholar
  19. 19.
    B. Panilaitis, G.H. Altman, J. Chen, H.J. Jin, V. Karageorgiou, D.L. Kaplan, Biomaterials 24, 3079 (2003)CrossRefGoogle Scholar
  20. 20.
    B. Mahendran, S.K. Ghosh, S.C. Kundu, J. Genetics 85, 1 (2006a)CrossRefGoogle Scholar
  21. 21.
    B. Mahendran, S.K. Ghosh, S.C. Kundu, J. Biochem. Mol. Biol. 39, 522 (2006b)Google Scholar
  22. 22.
    H. Akai, Int. J. Wild Silkmoths Silk 5, 255 (2000)Google Scholar
  23. 23.
    B. Mahendran, C. Acharya, R. Dash, S.K. Ghosh, S.C. Kundu, Gene 370, 51 (2006c)CrossRefGoogle Scholar
  24. 24.
    A. Datta, A.K. Ghosh, S.C. Kundu, Insect Biochem. Mol. Biol. 31, 1013 (2001)CrossRefGoogle Scholar
  25. 25.
    G. Shamitha, R.A. Purushottam, Int. J. Wild Silkmoths Silk 5, 274 (2000)Google Scholar
  26. 26.
    R. Dash, S.K. Ghosh, D.L. Kaplan, S.C. Kundu, Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 147, 129 (2007)CrossRefGoogle Scholar
  27. 27.
    S. Sofia, M.B. Mccarthy, G. Gronowicz, D.L. Kaplan, J. Biomed. Mater. Res. 54, 139 (2001)CrossRefGoogle Scholar
  28. 28.
    M. Bradford, Anal. Biochem. 72, 248 (1976)CrossRefGoogle Scholar
  29. 29.
    M. Hofer, A. Vacek, A. Lojek, J. Holá, D. Štreitová, Intl. Immunopharmacol. 7, 1369 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Bruns, Y. Stark, S. Röker, M. Wieland, G. Dräger, K. Andreas, F. Stahl, C. Kasper, T. Scheper, J. Biotechnol. 131, 335 (2007)CrossRefGoogle Scholar
  31. 31.
    A.S. Shanbhag, J.J. Jacobs, J. Black, J.O. Galante, T.T. Glant, J. Biomed. Mater. Res. 28, 81 (1994)CrossRefGoogle Scholar
  32. 32.
    S.M. Horowitz, M.A. Purdon, J. Biomed. Mater. Res. 29, 477 (1995)CrossRefGoogle Scholar
  33. 33.
    A.S. Shanbhag, J.J. Jacobs, J. Black, J.O. Galante, T.T. Glant, J. Orthop. Res. 13, 792 (1995)CrossRefGoogle Scholar
  34. 34.
    T. Rae, Crit. Rev. Biocompat. 2, 97 (1986)Google Scholar
  35. 35.
    A. Egczka-Osyczka, E.B. Turyna, A. Dubin, M. Eqczka, Biomaterials 18, 1243 (1997)CrossRefGoogle Scholar
  36. 36.
    K. Miyatake, H. Inoue, K. Hashimoto, H. Takaku, Y. Takata, S. Nakano, N. Yasui, M. Itakura, Biochem. Biophys. Res. Commun. 360, 115 (2007)CrossRefGoogle Scholar
  37. 37.
    K. Cai, K. Yao, S. Lin, Z. Yang, X. Li, H. Xie, T. Qing, L. Gao, Biomaterials 23, 1153 (2002)CrossRefGoogle Scholar
  38. 38.
    T. Mossman, J. Immunol. Methods 65, 55 (1983)CrossRefGoogle Scholar
  39. 39.
    J.S. Mao, Y.L. Cui, X.H. Wang, Y. Sun, Y.J. Yin, H.M. Zhao, K.D. Yao, Biomaterials 25, 3973 (2004)CrossRefGoogle Scholar
  40. 40.
    A. Datta, A.K. Ghosh, S.C. Kundu, Comp. Biochem. Physiol. B 129, 197 (2001)CrossRefGoogle Scholar
  41. 41.
    M.D. Pierschbacher, E. Ruoslahti, Nature 309, 30 (1984a)CrossRefGoogle Scholar
  42. 42.
    M.D. Pierschbacher, E. Ruoslahti, Proc. Natl Acad. Sci. USA 81, 5985 (1984b)CrossRefGoogle Scholar
  43. 43.
    E. Ruoslahti, M.D. Pierschbacher, Science 238, 491 (1987)CrossRefGoogle Scholar
  44. 44.
    N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, Y. Imai, Biochem. Biophys. Res. Commun. 208, 511 (1995)CrossRefGoogle Scholar
  45. 45.
    N.K. Crellin, R.V. Garcia, M.K. Levings, J. Immunol. Methods 324, 92 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chitrangada Acharya
    • 1
  • Sudip K. Ghosh
    • 1
  • S. C. Kundu
    • 1
  1. 1.Department of BiotechnologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations