Evaluation of physical–chemical properties and biocompatibility of a microrough and smooth bioactive glass particles

  • Ariadne Cristiane Cabral da Cruz
  • Márcia Thaís Pochapski
  • Ricardo Tramonti
  • José Caetano Zurita da Silva
  • Augusto Celso Antunes
  • Gibson Luiz Pilatti
  • Fábio André Santos


The purpose of this study was to evaluate physical–chemical and biocompatibility characteristics of a simple synthesis and low cost experimental bioactive glass. Physical and chemical properties were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDX), X-ray fluorescence (XRF) and X-ray diffraction (XRD). The biomaterials were subcutaneously implanted into rats, according to the following groups: G1, PerioGlas™; G2, Biogran™, G3, Experimental Bioactive Glass U (BGU) and G4, Control (Sham). After 7, 15, 21, 45, and 60 days, 5 animals/group/period were sacrificed and the subcutaneous tissue was dissected for histological and histometric analysis, considering inflammatory reaction and granulation area, presence of polymorphonuclear (PMN), monuclear (MN) and fibroblast (F) cells. SEM analysis of biomaterials showed irregular particles with different surface characteristics. EDX showed calcium, oxygen, sodium, phosphorus and silicon; XRF revealed silica oxide (SiO2), sodium oxide (Na2O), calcium oxide (CaO) and phosphorus oxide (P2O5). XRD indicated non crystalline phase. Measurement of tissue reaction showed similar results among the experimental groups at 45 and 60 days. No difference was found for PMN, MN and F cell counts. All biomaterials exhibited partial resorption. In conclusion, the experimental bioactive glass analyzed showed physical and chemical characteristics similar to the commercially available biomaterials, and was considered biocompatible, being partially reabsorbed in the subcutaneous tissue.


Bioactive Glass Tissue Reaction Acid Etching Calcium Oxide Autogenous Bone Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.


  1. 1.
    D.C. Cancian, E. Hochuli-Vieira, R.A. Marcantonio, I.R. Garcia Junior, Utilization of autogenous bone, bioactive glasses, and calcium phosphate cement in surgical mandibular bone defects in Cebus apella monkeys. Int. J. Oral Maxillofac. Implants 19, 73 (2004)Google Scholar
  2. 2.
    A. El-Ghannam, H. Amin, T. Nasr, A. Shama, Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects. Int. J. Oral Maxillofac. Implants 19, 184 (2004)Google Scholar
  3. 3.
    T. Turunen, J. Peltola, A. Yli-Urpo, R.P. Happonen, Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation. Clin. Oral Implants Res. 15, 135 (2004)CrossRefGoogle Scholar
  4. 4.
    K.A. Al Ruhaimi, Bone graft substitutes: a comparative qualitative histologic review of current osteoconductive grafting materials. Int. J. Oral Maxillofac. Implants 16, 105 (2001)Google Scholar
  5. 5.
    C. Vitale-Brovarone, E. Verne, M. Bosetti, P. Appendino, M. Cannas, Microstructural and in vitro characterization of SiO2–Na2O–CaO–MgO glass-ceramic bioactive scaffolds for bone substitutes. J. Mater. Sci. Mater. Med. 16, 909 (2005)CrossRefGoogle Scholar
  6. 6.
    E.A. Kaufmann, P. Ducheyne, I.M. Shapiro, Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation. J. Biomed. Mater. Res. 52, 783 (2000)CrossRefGoogle Scholar
  7. 7.
    E.A. Kaufmann, P. Ducheyne, I.M. Shapiro, Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation. J. Biomed. Mater. Res. 52, 783 (2000)CrossRefGoogle Scholar
  8. 8.
    S.B. Cho, F. Miyaji, T. Kokubo, T. Nakamura, Induction of bioactivity of a non-bioactive glass-ceramic by a chemical treatment. Biomaterials 18, 1479 (1997)CrossRefGoogle Scholar
  9. 9.
    E. Schepers, L. Barbier, P. Ducheyne, Implant placement enhanced by bioactive glass particles of narrow size range. Int. J. Oral Maxillofac. Implants 13, 655 (1998)Google Scholar
  10. 10.
    D.L. Wheeler, K.E. Stokes Ke, R.G. Hoellrich, D.L. Chamberland, S.W. Mcloughlin, Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J. Biomed. Mater. Res. 41, 527 (1998)CrossRefGoogle Scholar
  11. 11.
    A.J. Salinas, J. Roman, M. Vallet-Regi, J.M. Oliveira, R.N. Correia, M.H. Fernandes, In vitro bioactivity of glass and glass-ceramics of the 3CaO × P2O5–CaO × SiO2–CaO × MgO × 2SiO2 system. Biomaterials 21, 251 (2000)CrossRefGoogle Scholar
  12. 12.
    I.A. Silver, J. Deas, M.M. Erecinska, Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials 22, 175 (2001)CrossRefGoogle Scholar
  13. 13.
    J. Roman, A. J. Salinas, M. Vallet-Regi, J.M. Oliveira, R.N. Correia, M.H. Fernandes, Role of acid attack in the in vitro bioactivity of a glass-ceramic of the 3CaO.P2O5–CaO.SiO2–CaO.MgO.2SiO2 system. Biomaterials 22, 2013 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Itälä, V.V. Välimäki, R. Kiviranta, H.O. Ylanen, M. Hupa, E. Vuorio, H.T. Aro, Molecular biologic comparison of new bone formation and resorption on microrough and smooth bioactive glass microspheres. J. Biomed. Mater. Res. B Appl. Biomater. 65, 170 (2003)Google Scholar
  15. 15.
    M. Cerruti, D. Greenspan, K. Powers, Effect of pH and ionic strength on the reactivity of Bioglass 45S5. Biomaterials 26, 1665 (2005)CrossRefGoogle Scholar
  16. 16.
    W. Lai, J. Garino, C. Flaitz, P. Ducheyne, Excretion of resorption products from bioactive glass implanted in rabbit muscle. J. Biomed. Mater. Res. A 75, 398 (2005)Google Scholar
  17. 17.
    M. Vogel, C. Voigt, U.M. Gross, C.M. Muller-Mai, In vivo comparison of bioactive glass particles in rabbits. Biomaterials 22, 357 (2001)CrossRefGoogle Scholar
  18. 18.
    M. Bosetti, L. Hench, M. Cannas, Interaction of bioactive glasses with peritoneal macrophages and monocytes in vitro. J. Biomed. Mater. Res. 60, 79 (2002)CrossRefGoogle Scholar
  19. 19.
    T. Wilson, V. Parikka, J. Holmbom, H. Ylanen, R. Penttinen, Intact surface of bioactive glass S53P4 is resistant to osteoclastic activity. J. Biomed. Mater. Res. A 77, 67 (2006)Google Scholar
  20. 20.
    G.A. Silva, F.J. Costa, O.P. Coutinho, S. Radin, P. Ducheyne, R.L. Reis, Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. J. Biomed. Mater. Res. A 70, 442 (2004)CrossRefGoogle Scholar
  21. 21.
    C. Knabe, M. Stiller, G.F. Berger, D. Reif, R. Gildenhaar, C.R. Howlett, H. Zreiqat, The effect of bioactive glass ceramics on the expression of bone-related genes and proteins in vitro. Clin. Oral Implants Res. 16, 119 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ariadne Cristiane Cabral da Cruz
    • 1
  • Márcia Thaís Pochapski
    • 1
  • Ricardo Tramonti
    • 2
  • José Caetano Zurita da Silva
    • 3
  • Augusto Celso Antunes
    • 3
  • Gibson Luiz Pilatti
    • 1
  • Fábio André Santos
    • 1
  1. 1.Department of DentistryState University of Ponta GrossaUvaranas, Ponta GrossaBrazil
  2. 2.Department of HistologyFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Department of ChemistryState University of Ponta GrossaPonta GrossaBrazil

Personalised recommendations