Skip to main content
Log in

Fabrication and characterization of porous poly(l-lactide) scaffolds using solid–liquid phase separation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Freeze-extraction, which involves phase separation principle, gave highly porous scaffolds without the time and energy consuming freeze-drying process. The presented method eliminates the problem of formation of surface skin observed in freeze-drying methods. The effects of different freezing temperature (−80 and −24°C), medium (dry ice/ethanol bath and freezer) and polymer concentrations (1, 3, and 5 wt.%) on the scaffold properties were investigated in connection with the porous morphology and physicomechanical characteristics of the final scaffolds. The FESEM micrographs showed porous PLLA scaffolds with ladder-like architecture. The size of the longitudinal pores was in the range of 20–40 μm and the scaffolds had high porosity values ranging from 90% to 98%. Variation in porosity, mechanical resistance, and degree of regularity in the spatial organization of pores were observed when polymer concentration was changed. More open scaffold architecture with enhanced pore interconnectivity was achieved when a dry ice/ethanol bath of −80°C was used. Polymer concentration played an important role in fabricating highly porous scaffolds, with ladder-like architecture only appearing at polymer concentrations of above 3 wt.%. With the freeze-extraction method used here, highly porous and interconnected poly(l-lactide) scaffolds were successfully fabricated, holding great potential for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Langer, J.P. Vacanti, Science 260(5110), 920–926 (1993)

    Article  CAS  Google Scholar 

  2. R.M. Nerem, A. Sambanis, Tissue Eng. 1(1), 3–13 (1995)

    Article  Google Scholar 

  3. S.N. Bhatia, C.S. Chen, Biomed. Microdevice 2(2), 131–144 (1999)

    Article  Google Scholar 

  4. P.X. Ma, Mater. Today 7(5), 30–40 (2004)

    Article  CAS  Google Scholar 

  5. A.G. Mikos, A.J. Thorsen, L.A. Czerwonka, Y. Bao, R. Langer, Polymer 35(5), 1068–1077 (1994)

    Google Scholar 

  6. R.C. Thomson, M.J. Yaszemski, J.M. Powers, A.G. Mikos, Biomaterials 19(21), 1935–1943 (1998)

    Article  CAS  Google Scholar 

  7. P.X. Ma, R. Zhang, J. Biomed. Mater. Res. 56(4), 469–477 (2001)

    Article  CAS  Google Scholar 

  8. C. Schugens, V. Maquet, C. Grandfils, R. Jerome, P. Teyssie, J. Biomed. Mater. Res. 30, 449–461 (1996)

    Article  CAS  Google Scholar 

  9. K. Whang, C.H. Thomas, K.E. Healy, Polymer 36(4), 837–842 (1995)

    Article  CAS  Google Scholar 

  10. C. Schugens, V. Maquet, C. Grandfils, R. Jerome, P. Teyssie, Polymer 37(6), 1027–1038 (1996)

    Article  CAS  Google Scholar 

  11. C. Tu, Q. Cai, J. Yang, Y. Wan, J. Bei, S. Wang, Polym. Adv. Technol. 14(8), 565–573 (2003)

    Article  CAS  Google Scholar 

  12. M.H. Ho, P. Kuo, H. Hsieh, T. Hsien, L. Hou, J. Lai, D. Wang, Biomaterials 25(1), 129–138 (2004)

    Article  CAS  Google Scholar 

  13. P.X. Ma, Mater. Today 7(5), 30–40 (2004)

    Article  CAS  Google Scholar 

  14. P.X. Ma, in Scaffolding in Tissue Engineering (Taylor & Francis, 2006)

  15. D.J. Mooney, D.F. Baldwin, N.P. Suht, J.P. Vacantis, R. Langer, Biomaterials 17(14), 1417–1422 (1996)

    Article  CAS  Google Scholar 

  16. L.D. Harris, B.S. Kim, D.J. Mooney, J. Biomed. Mater. Res. 42(3), 396–402 (1998)

    Article  CAS  Google Scholar 

  17. D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 55(2), 203–216 (2001)

    Article  CAS  Google Scholar 

  18. T.D. Roy, J.L. Simon, J.L. Ricci, E.D. Rekow, V.P. Thompson, J.R. Parsons, J. Biomed. Mater. Res. A 66(2), 283–291 (2003)

    Article  Google Scholar 

  19. V.J. Chen, P.X. Ma, Biomaterials 25(11), 2065–2073 (2004)

    Article  CAS  Google Scholar 

  20. R. Zhang, P.X. Ma, J. Biomed. Mater. Res. 52(2), 430–438 (2000)

    Article  CAS  Google Scholar 

  21. S. Yang, K.F. Leong, Z. Du, C.K. Chua, Tissue Eng. 7(6), 679–689 (2001)

    Article  CAS  Google Scholar 

  22. L.M. Pineda, M. Busing, R.P. Meinig, S. Gogolewskil, J. Biomed. Mater. Res. 31(3), 385–394 (1996)

    Article  CAS  Google Scholar 

  23. J.H. Brauker, V.E. Carr-Brendel, L.A. Martinson, J. Crudele, W.D. Johnston, R.C. Johnson, J. Biomed. Mater. Res. 29(12), 1517–1524 (1995)

    Article  CAS  Google Scholar 

  24. J.P. Fisher, T.A. Holland, D. Dean, P.S. Engel, A.G. Mikos, J. Biomater. Sci. Polym. Ed. 12(6), 673–687 (2001)

    Article  CAS  Google Scholar 

  25. C.L. Jackson, M. T. Shaw, Polymer, 31(6), 1070–1084 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chui Ping Ooi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, Y.Q., Ooi, C.P. Fabrication and characterization of porous poly(l-lactide) scaffolds using solid–liquid phase separation. J Mater Sci: Mater Med 19, 2445–2452 (2008). https://doi.org/10.1007/s10856-008-3366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3366-9

Keywords

Navigation