Fabrication and characterization of porous poly(l-lactide) scaffolds using solid–liquid phase separation



Freeze-extraction, which involves phase separation principle, gave highly porous scaffolds without the time and energy consuming freeze-drying process. The presented method eliminates the problem of formation of surface skin observed in freeze-drying methods. The effects of different freezing temperature (−80 and −24°C), medium (dry ice/ethanol bath and freezer) and polymer concentrations (1, 3, and 5 wt.%) on the scaffold properties were investigated in connection with the porous morphology and physicomechanical characteristics of the final scaffolds. The FESEM micrographs showed porous PLLA scaffolds with ladder-like architecture. The size of the longitudinal pores was in the range of 20–40 μm and the scaffolds had high porosity values ranging from 90% to 98%. Variation in porosity, mechanical resistance, and degree of regularity in the spatial organization of pores were observed when polymer concentration was changed. More open scaffold architecture with enhanced pore interconnectivity was achieved when a dry ice/ethanol bath of −80°C was used. Polymer concentration played an important role in fabricating highly porous scaffolds, with ladder-like architecture only appearing at polymer concentrations of above 3 wt.%. With the freeze-extraction method used here, highly porous and interconnected poly(l-lactide) scaffolds were successfully fabricated, holding great potential for tissue engineering applications.


Foam Polymer Solution PLLA Polymer Concentration Porous Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Langer, J.P. Vacanti, Science 260(5110), 920–926 (1993)CrossRefGoogle Scholar
  2. 2.
    R.M. Nerem, A. Sambanis, Tissue Eng. 1(1), 3–13 (1995)CrossRefGoogle Scholar
  3. 3.
    S.N. Bhatia, C.S. Chen, Biomed. Microdevice 2(2), 131–144 (1999)CrossRefGoogle Scholar
  4. 4.
    P.X. Ma, Mater. Today 7(5), 30–40 (2004)CrossRefGoogle Scholar
  5. 5.
    A.G. Mikos, A.J. Thorsen, L.A. Czerwonka, Y. Bao, R. Langer, Polymer 35(5), 1068–1077 (1994)Google Scholar
  6. 6.
    R.C. Thomson, M.J. Yaszemski, J.M. Powers, A.G. Mikos, Biomaterials 19(21), 1935–1943 (1998)CrossRefGoogle Scholar
  7. 7.
    P.X. Ma, R. Zhang, J. Biomed. Mater. Res. 56(4), 469–477 (2001)CrossRefGoogle Scholar
  8. 8.
    C. Schugens, V. Maquet, C. Grandfils, R. Jerome, P. Teyssie, J. Biomed. Mater. Res. 30, 449–461 (1996)CrossRefGoogle Scholar
  9. 9.
    K. Whang, C.H. Thomas, K.E. Healy, Polymer 36(4), 837–842 (1995)CrossRefGoogle Scholar
  10. 10.
    C. Schugens, V. Maquet, C. Grandfils, R. Jerome, P. Teyssie, Polymer 37(6), 1027–1038 (1996)CrossRefGoogle Scholar
  11. 11.
    C. Tu, Q. Cai, J. Yang, Y. Wan, J. Bei, S. Wang, Polym. Adv. Technol. 14(8), 565–573 (2003)CrossRefGoogle Scholar
  12. 12.
    M.H. Ho, P. Kuo, H. Hsieh, T. Hsien, L. Hou, J. Lai, D. Wang, Biomaterials 25(1), 129–138 (2004)CrossRefGoogle Scholar
  13. 13.
    P.X. Ma, Mater. Today 7(5), 30–40 (2004)CrossRefGoogle Scholar
  14. 14.
    P.X. Ma, in Scaffolding in Tissue Engineering (Taylor & Francis, 2006)Google Scholar
  15. 15.
    D.J. Mooney, D.F. Baldwin, N.P. Suht, J.P. Vacantis, R. Langer, Biomaterials 17(14), 1417–1422 (1996)CrossRefGoogle Scholar
  16. 16.
    L.D. Harris, B.S. Kim, D.J. Mooney, J. Biomed. Mater. Res. 42(3), 396–402 (1998)CrossRefGoogle Scholar
  17. 17.
    D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 55(2), 203–216 (2001)CrossRefGoogle Scholar
  18. 18.
    T.D. Roy, J.L. Simon, J.L. Ricci, E.D. Rekow, V.P. Thompson, J.R. Parsons, J. Biomed. Mater. Res. A 66(2), 283–291 (2003)CrossRefGoogle Scholar
  19. 19.
    V.J. Chen, P.X. Ma, Biomaterials 25(11), 2065–2073 (2004)CrossRefGoogle Scholar
  20. 20.
    R. Zhang, P.X. Ma, J. Biomed. Mater. Res. 52(2), 430–438 (2000)CrossRefGoogle Scholar
  21. 21.
    S. Yang, K.F. Leong, Z. Du, C.K. Chua, Tissue Eng. 7(6), 679–689 (2001)CrossRefGoogle Scholar
  22. 22.
    L.M. Pineda, M. Busing, R.P. Meinig, S. Gogolewskil, J. Biomed. Mater. Res. 31(3), 385–394 (1996)CrossRefGoogle Scholar
  23. 23.
    J.H. Brauker, V.E. Carr-Brendel, L.A. Martinson, J. Crudele, W.D. Johnston, R.C. Johnson, J. Biomed. Mater. Res. 29(12), 1517–1524 (1995)CrossRefGoogle Scholar
  24. 24.
    J.P. Fisher, T.A. Holland, D. Dean, P.S. Engel, A.G. Mikos, J. Biomater. Sci. Polym. Ed. 12(6), 673–687 (2001)CrossRefGoogle Scholar
  25. 25.
    C.L. Jackson, M. T. Shaw, Polymer, 31(6), 1070–1084 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Division of BioengineeringSchool of Chemical and Biomedical Engineering, Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations