Skip to main content
Log in

Key parameters affecting the initial leaky effect of hemoglobin-loaded nanoparticles as blood substitutes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In order to realize long-term carrying/delivering oxygen and minimize the adverse effects of free hemoglobin (Hb) in vivo, Hb is desired to be confined in Hb-loaded nanoparticles (HbP), a novel blood substitute with potential clinical applications, and thus functions as the native red blood cells (RBCs). However, the initial burst release of Hb (“leaky effect”) greatly underscores the significance of this work. The study described here wants to disclose the key preparative parameters, including polymer, excipients in the inner aqueous phase and solvent profile, affecting the Hb release behavior (the initial 24 h) from HbP fabricated by commonly used solvent diffusion/evaporation double emulsion technique. The results demonstrate that PEGlytated polymers, regardless of two- or tri-block copolymers show slower release compared with the corresponding non-PEGlytated ones. The higher polymer concentration yields lower initial release. PEG200, added as excipient facilitates Hb burst effect to about 38.4%, almost 17% increase compared to the control (∼21%), whereas, PVA and Poloxamer188, due to amphiphilic nature, can effectively attenuate this leakage to about 13.0 and 5.1%, respectively. The diffusion/extraction rate from oil phase and the subsequent evaporation rate from the aqueous continuous phase of solvents impose different influences on Hb release. To reduce the burst effect, the initial diffusion/extraction rate should be slow, whereas, the concomitant evaporation rate should be as fast as possible. The results obtained here will be guidance’s for the future tailored design of more desirable polymersome nanoparticle blood substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.M. Winslow, Adv. Drug. Deliv. Rev. 40, 131 (2000)

    Article  CAS  Google Scholar 

  2. C. Chauvierre, M.C. Marden, C. Vauthier, D. Labarre, P. Couvreur, L. Lecler, Biomaterials 25, 3081 (2004)

    Article  CAS  Google Scholar 

  3. S.L. Li, J. Nickels, A.F. Palmer, Biomaterials 26, 3759 (2005)

    Article  CAS  Google Scholar 

  4. V. Budhiraja, J.D. Hellums, Microvasc. Res. 64, 220 (2002)

    Article  CAS  Google Scholar 

  5. T.M.S. Chang, J. Intern. Med. 253, 527 (2003)

    Article  CAS  Google Scholar 

  6. F.T. Meng, G.H. Ma, Y.D. Liu, W. Qiu, Z.G. Su, Colloid Surf. B: Biointerf. 33, 177 (2004)

    Article  CAS  Google Scholar 

  7. J. Zhao, C.S. Liu, Y. Yuan, X.Y. Tao, X.Q. Shan, Y. Sheng, F. Wu, Biomaterials 28, 1414 (2007)

    Article  CAS  Google Scholar 

  8. A. Gabizon, D. Papahadjopoulos, Proc. Natl. Acad. Sci. 85, 6949 (1988)

    Article  CAS  Google Scholar 

  9. N. Iodoshima, C. Udagawa, T. Ando, H. Fukuyasu, H. Watanabe, S. Nakabayashi, Int. J. Pharm. 146, 81 (1997)

    Article  Google Scholar 

  10. C.D. Reiter, X.D. Wang, J.E. Tanus-Santos, N. Hogg, R.O. Cannon, A.N. Schechter, M.T. Gladwin, Nat. Med. 8, 1383 (2002)

    Article  CAS  Google Scholar 

  11. R. Lee, K. Neya, T.A. Svizzero, G.J. Vlahakes, J. Appl. Physiol. 79, 236 (1995)

    CAS  Google Scholar 

  12. J.S. Olson, E.W. Foley, C. Rogge, A.L. Tsai, M.P. Doyle, D.D. Lemon, Free Radic. Biol. Med. 36, 685 (2004)

    Article  CAS  Google Scholar 

  13. K. Sampei, J.A. Ulatowski, Y. Asano, H. Kwansa, E. Bucci, R.C. Koehler, Am. J. Physiol.: Heart Circ. Physiol. 289, H1191 (2005)

    Article  CAS  Google Scholar 

  14. F.D. Cui, K. Shi, L.Q. Zhang, A.J. Tao, Y. Kawashima, J. Control Release 114, 242 (2006)

    Article  CAS  Google Scholar 

  15. S. Ghosh, J. Chem. Res. 4, 241 (2004)

    Article  Google Scholar 

  16. V. Coccoli, A. Luciani, S. Orsi, V. Guarino, F. Causa, P.A. Netti, J. Mater. Sci.: Mater. Med. doi:10.1007/S10856-007-3253-9

  17. Y.Y. Yang, H.H. Chia, T.S. Chung, J. Control Release 69, 81 (2000)

    Article  CAS  Google Scholar 

  18. J. Wang, B.M. Wang, S.P. Schwendeman, Biomaterials 25, 1919 (2004)

    Article  CAS  Google Scholar 

  19. A.K. Bajpai, S. Bhanu, J. Mater. Sci.: Mater. Med. 18, 1613 (2007)

    Article  CAS  Google Scholar 

  20. W.G. Zijlstra, A. Buursma, Comp. Biochem. Physiol. 118b, 743 (1997)

    CAS  Google Scholar 

  21. Y. Zhang, R.X. Zhuo, Biomaterials 26, 6736 (2005)

    Article  CAS  Google Scholar 

  22. Z.P. Zhang, S.S. Feng, Biomaterials 27, 4025 (2006)

    Article  CAS  Google Scholar 

  23. Y.P. Li, Y.Y. Pei, Z.H. Zhou, X.Y. Zhang, Z.H. Gu , J. Ding, J.J. Zhou, X.J. Gao, J. Control Release 71, 287 (2001)

    Article  Google Scholar 

  24. D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, J. Siepmann, Int. J. Pharm. 314, 198 (2006)

    Article  CAS  Google Scholar 

  25. P. Johansen, Y. Men, R. Audran, G. Corradin, H.P. Merkle, B. Gander, Pharm. Res. 15, 1103 (1998)

    Article  CAS  Google Scholar 

  26. Y.K. Katare, A.K. Pand, Eur. J. Pharm. Sci. 28, 179 (2006)

    Article  CAS  Google Scholar 

  27. K.M. Shakesheff, C. Evora, I. Soriano, R. Langer, J. Colloid Interf. Sci. 185, 538 (1997)

    Article  CAS  Google Scholar 

  28. C. Bouissou, J.J. Rouse, R. Price, C.F.V. Walle, Pharm. Res. 23, 1295 (2006)

    Article  CAS  Google Scholar 

  29. F. Boury, T. Ivanova, I. Panaiotov, J.E. Proust, A. Bois, J. Richou, J. Colloid Interf. Sci. 169, 380 (1995)

    Article  CAS  Google Scholar 

  30. L. Mu, S.S. Feng, J. Control Release 80, 129 (2002)

    Article  CAS  Google Scholar 

  31. M.D. Blanco, M.J. Alonso, Eur. J. Pharm. Biopharm. 43, 287 (1997)

    Article  CAS  Google Scholar 

  32. J.M. Péan, F. Boury, M.C. Venier-Julienne, P. Menei, J.E. Proust, J.P. Benoit, Pharm. Res. 16, 1294 (1999)

    Article  Google Scholar 

  33. T. Sato, M. Kanke, H.G. Schroeder, P.P. Deluca, Pharm. Res. 5, 21 (1988)

    Article  CAS  Google Scholar 

  34. Y.Y. Yang, T.S. Chung, X.L. Bai, W.K. Chan, Chem. Eng. Sci. 55, 2223 (2000)

    Article  CAS  Google Scholar 

  35. X.S. Luan, M. Skupin, J. Siepmann, Int. J. Pharm. 324, 168 (2006)

    Article  CAS  Google Scholar 

  36. T.W. Chung, Y.Y. Huang, Y.Z. Liu, Int. J. Pharm. 212, 161 (2001)

    Article  CAS  Google Scholar 

  37. Y.Y. Yang, H.H. Chia, T.S. Chung, J. Control Release 69, 81 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National High Technology Research and Development Program of China (863 Program) (No. 2004AA-302050) and from Shanghai Nanotechnology Special Foundation (No. 0452nm022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Liu, C., Yuan, Y. et al. Key parameters affecting the initial leaky effect of hemoglobin-loaded nanoparticles as blood substitutes. J Mater Sci: Mater Med 19, 2463–2470 (2008). https://doi.org/10.1007/s10856-007-3358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3358-1

Keywords

Navigation