Advertisement

Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation

  • Ekaterina Igorevna Shishatskaya
  • Olga N. Voinova
  • Anastasiya V. Goreva
  • Olga A. Mogilnaya
  • Tatiana G. Volova
Article

Abstract

Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3T3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist in a mild inflammatory reaction, pronounced macrophage infiltration that increases over time, involving mono- and poly-nuclear foreign body giant cells that resorb the polymeric matrix. No fibrous capsules were formed around polymeric microparticles; neither necrosis nor any other adverse morphological changes and tissue transformation in response to the implantation of the PHB microparticles were recorded. The results of the study suggest that polyhydroxybutyrate is a good candidate for fabricating prolonged-action drugs in the form of microparticles intended for intramuscular injection.

Keywords

PHAs PHBV Fibrous Capsule Foreign Body Giant Cell Polyhydroxybutyrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was financially supported by the Russian Ministry of Education and the U.S. Civilian Research & Development Foundation CRDF (Grant No. P1MO002), the Program of the RAS Presidium “Fundamental Research to Medicine” (Project No. 12.5), and the Program of the President of Russia (Grant MK-4149.2006.4).

References

  1. 1.
    W. AMASS, A. AMASS and B. TIGHE, Polymer Int. 47 (1998) 144CrossRefGoogle Scholar
  2. 2.
    J. KOST and R. LANGER, Adv. Drug. Deliver. Rev. 46 (2001) 125CrossRefGoogle Scholar
  3. 3.
    S. WILLIAMS and D. MARTIN, in “Series of Biopolymers”, edited by A. Steinbüchel, Vol 10 (Wiley-VCY Verlag GmbH, 2002) p. 91Google Scholar
  4. 4.
    C. W. POUTON and S. AKHTAR, Adv. Drug. Deliver. Rev. 18 (1996) 133CrossRefGoogle Scholar
  5. 5.
    H. UEDA and Y. TABATA, Adv. Drug. Deliver. Rev. 55 (2003) 501CrossRefGoogle Scholar
  6. 6.
    V. PIDDUBNYAK, P. KURCOK and A. MATUSZOWICZ, Biomaterials 25 (2004) 5271CrossRefGoogle Scholar
  7. 7.
    S. T. HARRISON, H. A. CHASE and S. R. AMOR, Int. J. Biol. Macromol. 14 (1992) 50CrossRefGoogle Scholar
  8. 8.
    I. GURSEL and V. HASIRCI, J. Microincapsulation 12 (1995) 185CrossRefGoogle Scholar
  9. 9.
    I. GURSEL, F. KORKUSAZ and F. TURESIN, Biomaterials 22 (2000) 73CrossRefGoogle Scholar
  10. 10.
    B. LY, Z. R. WANG and H. YANG, J. Microencapsulation 18 (2001) 55CrossRefGoogle Scholar
  11. 11.
    M. A. SALMAN, A. SAHIN and M. A. ONUR, Acta. Anaestesiol. Scand. 47 (2003) 1006CrossRefGoogle Scholar
  12. 12.
    S. FREIBERG and X. ZHU, Int. J. Pharm. 282 (2004) 1CrossRefGoogle Scholar
  13. 13.
    G. RUAN and S. FENG, Biomaterials 24 (2003) 5037CrossRefGoogle Scholar
  14. 14.
    Y. H. YUN, D. J. GOETZ and P. YELLEN, Biomaterials 25 (2004) 147CrossRefGoogle Scholar
  15. 15.
    J. BREITENBACH, Eur. J. Pharm. Biopharm. 54 (2002) 107CrossRefGoogle Scholar
  16. 16.
    M. SIMEONOVA, K. CHORBADJIEV and M. ANTCHEVA, Biomaterials 19 (1998) 2187CrossRefGoogle Scholar
  17. 17.
    J. ANDERSON and M. SHIVE, Adv. Drug Deliv. Rev. 28 (1997) 5CrossRefGoogle Scholar
  18. 18.
    V. V. SEROV and V. S. PAUKOV, in “Vospaleniye” (“Inflammation”) (Meditsina, Moscow, 1995) p. 629Google Scholar
  19. 19.
    T. G. VOLOVA, in “Microbial polyhydroxyalkanoates—Plastic Materials of the 21st Century (Biosynthesis, Properties, Applications)” (Nova Science Pub. Inc., New York, 2004) p. 283Google Scholar
  20. 20.
    B. SAAD, M. CASOTTI and T. HUBER, J. Biomater. Sci. Polymer Edn. 11 (2000) 787CrossRefGoogle Scholar
  21. 21.
    E. SHISHATSKAYA, T. VOLOVA and S. EFREMOV, J. Mater. Sci. Mater. Med. 15 (2004) 719CrossRefGoogle Scholar
  22. 22.
    S. GOGOLEWSKI, M. JAVANOVIC and S. PERREN, J. Biomed. Mater. Res. 27 (1993) 1135CrossRefGoogle Scholar
  23. 23.
    E. SHISHATSKAYA and T. VOLOVA, J. Mater. Sci. Mater. Med. 15 (2004) 915CrossRefGoogle Scholar
  24. 24.
    X. QU, Q. WU and K. ZHANHANG, Biomaterials 27 (2006) 3540Google Scholar
  25. 25.
    T. VOLOVA and G. KALAACHEVA, P12. RF Patent No. 2051967 (in Russian)Google Scholar
  26. 26.
    V. SEVASTIANOV, N. PEROVA and E. SHISHATSKAYA, J. Biomater. Sci. Polymer Edn. 14 (2003) 1029CrossRefGoogle Scholar
  27. 27.
    TRADEMARK “BIOPLASTOTANTM” Registration Certificate No. 315652 of the Federal Institute for Patent Examination for Application No. 2006703271/50, Priority of 15.02.2006Google Scholar
  28. 28.
    RFSS (The Russian Federation state standard) 5496–78Google Scholar
  29. 29.
    R. DIJKHUIZEN-RADERSMA, S. HESSLING and P. KAIM, Biomaterials 23 (2002) 4719CrossRefGoogle Scholar
  30. 30.
    R. I. FRESHNEY, in “Culture of Animal Cells: A Manual of Basic Technique” (Wiley, New York, 2000) p. 329Google Scholar
  31. 31.
    A. GENIN, A. Il`IN and A. KAPLANSKII, Aviakosmicheskaya i ekologicheskaya meditsina 35 (2001) 14 (in Russian)Google Scholar
  32. 32.
    G. A. PKHAKADZE, V. P. YATSENKO, A. K. KOLOMIITSEV, M. V. GRIGORIEVA and K. L. KONOPLITSKAYA, in “Biodestruktivnyye polimery” (“Biodegradable polymers”) (Naukova Dumka, Kiev, 1990) p. 143 (in Russian)Google Scholar
  33. 33.
    J. ANDERSON, Asaio 11 (1988) 101CrossRefGoogle Scholar
  34. 34.
    E. FOURNIER, C. PASSIRANI and N. COLIN, Biomaterials 27 (2006) 4963CrossRefGoogle Scholar
  35. 35.
    S. WILLIAMS, D. MARTIN and D. HOROWITZ, Int. J. Biol. Macromol. 235 (1999) 111CrossRefGoogle Scholar
  36. 36.
    R. SADIN, S. HOERSTRUP and J. SPERLING, Ann. Thorac. Surg. 70 (2000) 140CrossRefGoogle Scholar
  37. 37.
    V. SEVASTIANOV, I. ROZANOVA and E. TSEITLINA, Meditsinskaya tekhnika (Medical technology) 4 (1990) 26 (in Russian)Google Scholar
  38. 38.
    V. SEVASTIANOV, in “Iskusstvennyye organy” (“Artificial organs”), edited by V. I. Shumakov (Meditsina, Moscow, 1990) p. 216 (in Russian)Google Scholar
  39. 39.
    N. B. DOBROVA, T. P. NOSKOVA and S. P. NOVIKOVA, in “Sbornik metodicheskikh rekomendatsii po otsenke biosovmestimykh svoistv iskusstvennykh materialov, kontaktiruyushchikh s krovyyu” (“Collected methodological suggestions for evaluating biocompatible properties of artificial materials contacting blood”) (VNITIPRIBOR, Moscow, 1991) p. 70 (in Russian)Google Scholar
  40. 40.
    G. N. STASISHINA and T. G. VOLOVA, P12. RF Patent No. 2053292 (in Russian)Google Scholar
  41. 41.
    T. G. VOLOVA and G. S. KALAACHEVA, P12. RF Patent No. 2051967 (in Russian)Google Scholar
  42. 42.
    T. G. VOLOVA, G. S. KALACHEVA and V. M. KONSTANTINOVA, P12. RF Patent No. 2051968 (in Russian)Google Scholar
  43. 43.
    U. STOCK, M. NAGASHIMA and P. N. KHALIL, J. Thorac. Cardiovasc. Surg. 119 (2000) 732CrossRefGoogle Scholar
  44. 44.
    F. KORKUSUZ, P. KORKUSAZ and F. EKSIOGLU, J. Biomed. Mater. Res. 55 (2001) 217CrossRefGoogle Scholar
  45. 45.
    E. I. SHISHATSKAYA, T. G. VOLOVA, S. A. GORDEEV and A. P. PUZYR, J. Biomater. Sci. Polymer Edn. 16 (2005) 643CrossRefGoogle Scholar
  46. 46.
    R. MARCHANT, A. HILTNER and C. HAMLIN, J. Biomed. Mater. Res. 17 (1983) 301CrossRefGoogle Scholar
  47. 47.
    Q. ZHAO, J. ANDERSON and A. HILTHNER, J. Biomed. Mater. Res. 26 (1992) 1019CrossRefGoogle Scholar
  48. 48.
    W. KAO, Q. ZHAO and A. HILTNER, J. Biomed. Mater. Res. 28 (1994) 73CrossRefGoogle Scholar
  49. 49.
    R. HHEE, S. BIRGH-DEWINTER and W. DAFMS, Cell Tis. Res. 198 (1979) 355Google Scholar
  50. 50.
    J. M. ANDERSON, in “Encyclopedia of Materials: Science and Technology” (Elsevier Science Ltd., 2001) p. 560Google Scholar
  51. 51.
    F. KANG and J. SINGH, Aaps Pharm. Sci. Tech. 6 (2005) 487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ekaterina Igorevna Shishatskaya
    • 1
  • Olga N. Voinova
    • 1
  • Anastasiya V. Goreva
    • 1
  • Olga A. Mogilnaya
    • 2
  • Tatiana G. Volova
    • 1
    • 3
  1. 1.Laboratory of Chemoautotrophic BiosynthesisInstitute of Biophysics SB RAS (Siberian Branch Russian Academy of Sciences)KrasnoyarskRussia
  2. 2.Laboratory of Bacterial BioluminescenceInstitute of Biophysics SB RAS (Siberian Branch Russian Academy of Sciences)KrasnoyarskRussia
  3. 3.Institute of Fundamental Biology and BiotechnologySiberian Federal UniversityKrasnoyarskRussia

Personalised recommendations