Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment

  • Atsushi Sugino
  • Toshiki Miyazaki
  • Chikara Ohtsuki


Artificial joints can replace damaged joints provided the surrounding bone is sufficiently dense. However, elderly patients generally have reduced osteoporosis-associated bone density. Therefore, restitution of bone density is essential to ensure implantation. Injectable and resorbable bioactive fillers with bone-bonding ability (osteoconductivity) are promising, as osteoporosis can be reversed with minimal invasion. Osteoconduction occurs through the surface formation of biologically active hydroxyapatite via reactions with body fluids. Heterogeneous nucleation of the hydroxyapatite is catalysed by specific surface functional groups. In addition, release of Ca2+ ions into the surrounding fluids enhances apatite nucleation by increasing its degree of supersaturation. We tested injectable bioactive filler made from cross-linked polyglutamic acid (PGA). This has many carboxyl groups that facilitate apatite nucleation. An insoluble hydrogel can be formed by cross-linkage. We exposed PGA gels to a simulated body fluid for 7 days. Trace amounts of calcium phosphate were formed, but were not identified as bone-like apatite by X-ray diffraction. However, formation of a bone-like apatite layer was detected using pre-treatment with CaCl2 solutions (>0.01 mol dm−3) dose dependently. Thus, this chemically cross-linked PGA gel could induce the heterogeneous nucleation of hydroxyapatite in a body environment, and this was enhanced by pre-treatment with CaCl2.


Apatite Simulated Body Fluid CaCl2 Solution Amorphous Calcium Phosphate Bioactive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors greatly appreciate financial support for this study by Okayama Prefecture Industrial Promotion Foundation (Okayama Challenge Project). One of the authors (T. M.) also acknowledges the support by a Grant-in-Aid for Encouragement of Young Scientists ((B)16700365), Japan Society for the Promotion of Science.


  1. 1.
    K. D. KUHN, in “Bone Cements” (Springer, Berlin, 2000) p. 1Google Scholar
  2. 2.
    N. J. HALLAB, J. J. JACOBS and J. L. KATZ, in “Biomaterials Science” (Elsevier, London, 2004) p. 526Google Scholar
  3. 3.
    H.-M. KIM, J. Ceram. Soc. Japan 109 (2001) S49Google Scholar
  4. 4.
    T. KOKUBO, H.-M. KIM and M. KAWASHITA, Biomaterials 24 (2003) 2161CrossRefGoogle Scholar
  5. 5.
    P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA, T. NAKAMURA and T. YAMAMURO, J. Am. Ceram. Soc. 75 (1992) 2094CrossRefGoogle Scholar
  6. 6.
    P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA and K. DE GROOT, J. Biomed. Mater. Res. 28 (1994) 7CrossRefGoogle Scholar
  7. 7.
    M. UCHIDA, H.-M. KIM, T. KOKUBO, S. FUJIBAYASHI and T. NAKAMURA, J. Biomed. Mater. Res. 64A (2003) 164CrossRefGoogle Scholar
  8. 8.
    M. UCHIDA, H.-M. KIM, T. KOKUBO and T. NAKAMURA, J. Am. Ceram. Soc. 84 (2001) 2041CrossRefGoogle Scholar
  9. 9.
    T. MIYAZAKI, H.-M. KIM, T. KOKUBO, H. KATO and T. NAKAMURA, J. Sol-gel Sci. Tech. 21 (2001) 83CrossRefGoogle Scholar
  10. 10.
    T. MIYAZAKI, H.-M. KIM, T. KOKUBO, C. OHTSUKI and T. NAKAMURA, J. Ceram. Soc. Japan 109 (2001) 934Google Scholar
  11. 11.
    M. TANAHASHI and T. MATSUDA, J. Biomed. Mater. Res. 34 (1997) 305CrossRefGoogle Scholar
  12. 12.
    C. OHTSUKI, T. KOKUBO and T. YAMAMURO, J. Non-Cryst. Solids 143 (1992) 84CrossRefGoogle Scholar
  13. 13.
    D. GONZALES, K. FAN and M. SEVOIAN, J. Polym. Sci.: A Polym. Chem. 34 (1996) 2019CrossRefGoogle Scholar
  14. 14.
    M. KUNIOKA, Appl. Microbiol. Biotech. 47 (1997) 469Google Scholar
  15. 15.
    R. FUJISAWA, Y. WADA, Y. NODASAKA and Y. KUBOKI, Biochim. Biophys. Acta. 1292 (1996) 53Google Scholar
  16. 16.
    T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721CrossRefGoogle Scholar
  17. 17.
    S. B. CHO, K. NAKANISHI, T. KOKUBO, N. SOGA, C. OHTSUKI, T. NAKAMURA, T. KITSUGI and T. YAMAMURO, J. Am. Ceram. Soc. 78 (1995) 1769CrossRefGoogle Scholar
  18. 18.
    T. KOKUBO and H. TAKADAMA, Biomaterials 27 (2006) 2907Google Scholar
  19. 19.
    M. KUNIOKA and K. FURUSAWA, J. Appl. Polym. Sci. 65 (1997) 1889CrossRefGoogle Scholar
  20. 20.
    K. SUZUKI, Y. SUZUKI, M. TANIHARA, K. OHNISHI, T. HASHIMOTO, K. ENDO and Y. NISHIMURA, J. Biomed. Mater. Res. 49 (2000) 528CrossRefGoogle Scholar
  21. 21.
    C. OHTSUKI, T. KOKUBO, K. TAKATSUKA and T. YAMAMURO, J. Ceram. Soc. Japan 99 (1991) 1Google Scholar
  22. 22.
    H. TAKADAMA, H.-M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Ceram. Soc. Japan 108 (2000) 118Google Scholar
  23. 23.
    H. TAKADAMA, H.-M. KIM, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 57 (2001) 441CrossRefGoogle Scholar
  24. 24.
    H. TAKADAMA, H.-M. KIM, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 55 (2001) 185CrossRefGoogle Scholar
  25. 25.
    H. TAKADAMA, H.-M. KIM, T. KOKUBO and T. NAKAMURA, J. Am. Ceram. Soc. 85 (2002) 1933CrossRefGoogle Scholar
  26. 26.
    J. R. JONES and L. L. HENCH, Curr. Opin. Solid State Mater. Sci. 7 (2003) 301CrossRefGoogle Scholar
  27. 27.
    T. MIYAZAKI, C. OHTSUKI, Y. AKIOKA, M. TANIHARA, J. NAKAO, Y. SAKAGUCHI and S. KONAGAYA, J. Mater. Sci.: Mater. Med. 14 (2003) 569CrossRefGoogle Scholar
  28. 28.
    A. TAKEUCHI, C. OHTSUKI, T. MIYAZAKI, M. YAMAZAKI and M. TANIHARA, J. Biomed. Mater. Res. 65A (2003) 283CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Atsushi Sugino
    • 1
    • 2
  • Toshiki Miyazaki
    • 3
  • Chikara Ohtsuki
    • 1
  1. 1.Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.Nakashima Propeller Co., LtdJoto-KitagataJapan
  3. 3.Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations