Hydrogel–elastomer composite biomaterials: 4. Experimental optimization of hydrogel–elastomer composite fibers for use as a wound dressing

  • Henry T. Peng
  • Lucie Martineau
  • Andy Hung


We report a novel 3-D cavity wound dressing based on a hydrogel–elastomer Interpenetrating Polymer Network (IPN) fabricated into an open-mesh architecture. IPN fibers used to form the dressing were produced by a wet spinning method and optimized in two steps. A factorial experiment was first conducted to identify key parameters that controlled fiber properties. We observed that gelatin wt% played a major role in determining fiber yield, swelling, strength and stability. Other contributing factors included coagulation solution composition, gelatin type, and pre- and post-UV irradiation time. The key factors were then further evaluated individually to achieve a condition that provided a combination of good swelling, mechanical properties and stability. The concentration of the gelatin/HydroThaneTM extrusion solution significantly affected fiber formation and properties, presumably due to the changes in solution viscosity. The effects of pre-UV irradiation were also ascribed to its impact on the solution viscosity and became negligible at higher concentrations when viscosity is mainly controlled by concentration. The composition of the coagulation bath influenced the fiber swelling and wet stress. These results, taken together with our previous studies, suggest that our biomaterial would provide a combination of mechanical and swelling properties suitable for wound dressing applications.


Gelatin Solution Viscosity Attenuate Total Reflectance Interpenetrate Polymer Network Fiber Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to Ms. Michelle Mok and Mr. Doug Saunders for their expert technical assistance.


  1. 1.
    K. JAYARAMAN, M. KOTAKI, Y. ZHANG, X. MO, and S. RAMAKRISHNA, J. Nanosci. Nanotechnol. 4 (2004) 52Google Scholar
  2. 2.
    Z. MA, M. KOTAKI, R. INAI, and S. RAMAKRISHN, Tissue Eng. 11 (2005) 101CrossRefGoogle Scholar
  3. 3.
    Y. ZHANG, C. T. LIM, S. RAMAKRISHNA, and Z. M. HUANG, J. Mater. Sci. Mater. Med. 16 (2005) 933CrossRefGoogle Scholar
  4. 4.
    K. TUZLAKOGLU, C. M. ALVES, J. F. MANO, and R. L. REIS, Macromol. Biosci. 4 (2004) 811CrossRefGoogle Scholar
  5. 5.
    M. LI, M. J. MONDRINOS, M. R. GANDHI, F. K. KO, A. S. WEISS, and P. I. LELKES, Biomaterials 26 (2006) 5999CrossRefGoogle Scholar
  6. 6.
    S. YAMANE, N. IWASAKI, T. MAJIMA, T. FUNAKOSHI, T. MASUKO, K. HARADA, A. MINAMI, K. MONDE, and S. NISHIMURA, Biomaterials 26 (2005) 611CrossRefGoogle Scholar
  7. 7.
    H. BAK, A. AFOKE, A. J. MCLEOD, R. BROWN, P. A. SHAMLOU, and P. DUNNILL, Chem. Eng. Sci. 57 (2002) 913CrossRefGoogle Scholar
  8. 8.
    C.-W. NAM, Y.-H. KIM, and S.-W. KO, J. Appl. Polym. Sci. 82 (2001) 1620CrossRefGoogle Scholar
  9. 9.
    L. FAN, Y. DU, R. HUANG, Q. WANG, X. WANG, and L. ZHANG, J. Appl. Polym. Sci. 96 (2006) 1625CrossRefGoogle Scholar
  10. 10.
    H. ZHENG, Z. A. TAN, X. JIAN, and R. Z. YUAN, Key Eng. Mater. 249 (2003) 437CrossRefGoogle Scholar
  11. 11.
    Y. ZHANG, H. QUYANG, C. T. LIM, S. RAMAKRISHNA, and Z.-M. HUANG, J. Biomed. Mater. Res. 72B (2005) 156CrossRefGoogle Scholar
  12. 12.
    J. J. STANKUS, J. GUAN, and W. R. WAGNER, J. Biomed. Mater. Res. 70A (2004) 603CrossRefGoogle Scholar
  13. 13.
    H. T. PENG, L. MARTINEAU, and P. N. SHEK, J. Mater. Sci. Mater. Med. 18 (2007) 975CrossRefGoogle Scholar
  14. 14.
    H. T. PENG, M. MOK, L. MARTINEAU, and P. N. SHEK, J. Mater. Sci. Mater. Med. 18 (2007) 1025CrossRefGoogle Scholar
  15. 15.
    H. T. PENG, L. MARTINEAU, and P. N. SHEK, J. Mater. Sci. Mater. Med. (accepted for publication)Google Scholar
  16. 16.
    S. B. LEE, H. W. JEON, Y. W. LEE, Y. M. LEE, K. W. SONG, M. H. PARK, Y. S. NAM, and H. C. AHN, Biomaterials 24 (2003) 2503CrossRefGoogle Scholar
  17. 17.
    S. YOUNG , M. WONG, Y. TABATA, and A. G. MIKOS, J. Control Release 109 (2005) 256CrossRefGoogle Scholar
  18. 18.
    K. B. DJAGNY, Z. WANG, and S. Y. XU, Crit. Rev. Food Sci. 41 (2001) 481CrossRefGoogle Scholar
  19. 19.
    R. J. ZDRAHALA and I. J. ZDRAHALA, J. Biomater. Appl. 14 (1999) 67Google Scholar
  20. 20.
    M. NAGURA, H. YOKOTA, M. IKEURA, Y. GOTOH, and Y. OHKOSHI, Polym. J. 34 (2002) 761CrossRefGoogle Scholar
  21. 21.
    K. GISSELFÄLT, B. EDBERG, and P. FLODIN, Biomacromolecules 3 (2002) 951CrossRefGoogle Scholar
  22. 22.
    M.-S. KHIL, D.-I. CHA, H.-Y. KIM, I.-S. KIM, and N. BHATTARAI, J. Biomed. Mater. Res. 67B (2003) 675CrossRefGoogle Scholar
  23. 23.
    R. YANG, R. R. MATHER, and A. F. FOTHERINGHAM, J. Appl. Polym. Sci. 96 (2005) 144CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Available at accessed April 20, 2005
  26. 26.
    E. MARSANO, M. CANETTI, G. CONIO, P. CORSINI, and G. FREDDI, J. Appl. Polym. Sci. 104 (2007) 2187CrossRefGoogle Scholar
  27. 27.
    L. D. BELLINCAMPI and M. G. DUNN, J. Appl. Polym. Sci. 63 (1997) 1493CrossRefGoogle Scholar
  28. 28.
    C.-W. NAM, Y.-H. KIM, and S.-W. KO, J. Appl. Polym. Sci. 74 (1999) 2258CrossRefGoogle Scholar
  29. 29.
    J. M. GARCIA, E. CHAMBERS IV, Z. MATTA, and M. CLARK, Dysphagia 20 (2005) 325CrossRefGoogle Scholar
  30. 30.
    R. G. MILLER, C. Q. BOWLES, C. C. CHAPPELOW, and J. D. EICK, J. Biomed. Mater. Res. 41 (1998) 237CrossRefGoogle Scholar
  31. 31.
    S. H. TEOH, Z. G. TANG, and S. RAMAKRISHNA, J. Mater. Sci. Mater. Med. 10 (1999) 343CrossRefGoogle Scholar
  32. 32.
    J. FEI, Z. ZHANG, L. ZHONG, and L. GU, J. Appl. Polym. Sci. 85 (2002) 2423CrossRefGoogle Scholar
  33. 33.
    J. S. TSAI and W. C. SU, J. Mater. Sci. Lett. 10 (1991) 1253CrossRefGoogle Scholar
  34. 34.
    H. BARANI and S. H. BAHRAMI, J. Appl. Polym. Sci. 103 (2007) 2000CrossRefGoogle Scholar
  35. 35.
    I. C. UM, C. S. KI, H. Y. KWEON, K. G. LEE, D. W. IHM, and Y. H. PARK, Intern. J. Biol. Macromol. 34 (2004) 107CrossRefGoogle Scholar
  36. 36.
    S.-W. HA, A. E. TONELLI, and S. M. HUDSON, Biomacromolecules 6 (2005) 1722CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Available at accessed November 12, 2004
  39. 39.
    M. YUAN, V. R. JOSEPH, and Y. LIN, Technometrics, in press (available at accessed May 28, 2007)
  40. 40.
    Y. S. OH, S. LEE, S. K. MIN, Y. J. SHIN, and B. K. KIM, J. Appl. Polym. Sci. 64 (1997) 1937CrossRefGoogle Scholar
  41. 41.
    I. C. UM, H. Y. KWEON, K. G. LEE, D. W. IHM, J.-H. LEE, and Y. H. PARK, Intern. J. Biol. Macromol. 34 (2004) 89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Defence Research and Development Canada – TorontoTorontoCanada
  2. 2.Defence Research and Development Canada – ValcartierQuebecCanada

Personalised recommendations