Skip to main content
Log in

Stealth dendrimers for drug delivery: correlation between PEGylation, cytocompatibility, and drug payload

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

It is advantageous to utilize low generation polyamidoamine (PAMAM) dendrimers for drug delivery because low generations (generation 4.0 or below) have more biologically favorable properties as compared to high generations. Nevertheless, modification of low generation dendrimers with PEG to create stealth dendrimers is still necessary to avoid potential side effects by long term accumulation. However, low generation dendrimers have much fewer surface sites for drug loading as compared to higher generations. To efficiently utilize low generation dendrimer-based stealth dendrimers for drug loading, PEGylation needs to be optimized. In this study, we synthesized a series of stealth dendrimers based on low generation Starburst™ PAMAM dendrimers (i.e., G2.5, G3.0, G3.5, and G4.0) and quantitatively assessed PEGylation efficacy in modulating cytocompatibility of low generation PAMAM dendrimers. Cytocompatibility of stealth dendrimers was examined using endothelial cells. The results showed that PEGylation degree on low generation dendrimers could be dramatically reduced to leave as many unoccupied surface groups as possible for drug loading, while maintaining the drug carrier cytocompatibility. 3PEGs-G3.0 and 10PEGs-G4.0 were considered initially optimized stealth dendrimers that would be further modified to deliver drugs of interest. Correlation of PEGylation, cytocompatibility, and drug payload allowed us to optimize low generation dendrimer-based stealth dendrimers for drug delivery and advance the understanding of structure-property relationship of stealth dendrimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. YANG and W. J. KAO, J. Biomater. Sci. Polym. Ed. 17 (2006) 3

    Article  CAS  Google Scholar 

  2. Y. WANG, P. BOROS, J. LIU, L. QIN, Y. BAI, A. U. BIELINSKA, J. F. KUKOWSKA-LATALLO, J. R. BAKER and J. S. BROMBERG, Mol. Ther. 2 (2000) 602

    Article  CAS  Google Scholar 

  3. R. WIWATTANAPATAPEE, B. CARRENO-GOMEZ, N. MALIK and R. DUNCAN, Pharm. Res. 17 (2000) 991

    Article  CAS  Google Scholar 

  4. M. LIU and J. M. J. FRECHET, Pharm. Sci. Technol. Today 2 (1999) 393

    Article  CAS  Google Scholar 

  5. R. ESFAND and D. A. TOMALIA, Drug Discov. Today 6 (2001) 427

    Article  CAS  Google Scholar 

  6. D. LUO, K. HAVERSTICK, N. BELCHEVA, E. HAN and W. M. SALTZMAN, Macromolecules 35 (2002) 3456

    Article  CAS  Google Scholar 

  7. H. YANG and S. T. LOPINA, J. Biomed. Mater. Res. Part A 76A (2006) 398

    Article  CAS  Google Scholar 

  8. C. KOJIMA, K. KONO, K. MARUYAMA and T. TAKAGISHI, Bioconjugate. Chem. 11 (2000) 910

    Article  CAS  Google Scholar 

  9. N. MALIK, R. WIWATTANAPATAPEE, R. KLOPSCH, K. LORENZ, H. FREY, J. W. WEENER, E. W. MEIJER, W. PAULUS and R. DUNCAN, J. Control. Release 65 (2000) 133

    Article  CAS  Google Scholar 

  10. D. A. TOMALIA, H. BAKER, J. DEWALD, M. HALL, G. KALLOS, S. MARTIN, J. ROECK, J. RYDER and P. SMITH, Polym. J. (Tokyo) 17 (1985) 117

    CAS  Google Scholar 

  11. J. C. ROBERTS, M. K. BHALGAT and R. T. ZERA, J. Biomed. Mater. Res. 30 (1996) 53

    Article  CAS  Google Scholar 

  12. H. YANG and S. T. LOPINA, J. Biomater. Sci. Polym. Ed. 14 (2003) 1043

    Article  CAS  Google Scholar 

  13. H. YANG, J. J. MORRIS and S. T. LOPINA, J. Colloid Interface Sci. 273 (2004) 148

    Article  CAS  Google Scholar 

  14. M. ISHIYAMA, H. TOMINAGA, M. SHIGA, K. SASAMOTO, Y. OHKURA and K. UENO, Biol. Pharm. Bull. 19 (1996) 1518

    CAS  Google Scholar 

  15. Y. BAI, A. K. SUZUKI and M. SAGAI, Free. Radic. Biol. Med. 30 (2001) 555

    Article  CAS  Google Scholar 

  16. H. YANG and S. T. LOPINA, J. Biomed. Mater. Res. 72A (2005) 107

    Article  CAS  Google Scholar 

  17. H. YANG and S. T. LOPINA, J. Mater. Sci. Mater. Med. 18 (2007) 2061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Hu Yang acknowledges the new faculty startup support from the Department of Biomedical Engineering and School of Engineering of Virginia Commonwealth University. Stephanie Lopina acknowledges the support from an NSF CAREER award (BES-9984840), a University of Akron Faculty Research Grant (FRG-1484), and a Sigma Xi Grant-in-Aid of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Lopina, S.T., DiPersio, L.P. et al. Stealth dendrimers for drug delivery: correlation between PEGylation, cytocompatibility, and drug payload. J Mater Sci: Mater Med 19, 1991–1997 (2008). https://doi.org/10.1007/s10856-007-3278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3278-0

Keywords

Navigation