Skip to main content
Log in

Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Cortical bone is a composite material consisting of a porous elastic solid and viscous fluid. It is well known that the intraosseous fluid circulates as a result of a bone fluid pressure gradient in the porous space of the cortical bone. When a time-dependent mechanical load is applied to the bone, intraosseous fluid flow occurs through the interconnected pore space in the bone. Bone fluid flow leads to a strain generated streaming potential (SGP). However, there is no experimental study on the relationship between the generation of intraosseous pressure and the SGP. The purpose of this study was to obtain the relationship between SGP and intraosseous pressure generations in cortical bone. In order to understand the issue, a drained, one-dimensional experimental setup for fluid-filled cortical bone samples with four different strain rates was used to simultaneously measure the intraosseous pressure and SGP. The results revealed a significant correlation (r = 0.98, p = 0.02) between the generation of the SGP and the intraosseous pressure, which indicates that an intraosseous pressure gradient produces a SGP in cortical bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. C. COWIN, J. Biomech. 32 (1999) 217

    Article  CAS  Google Scholar 

  2. J. D. BRYANT, T. DAVID, P. H. GASKEIL, S. KING and G. LOND, Proc. Inst. Mech. Eng. [H]: J. Eng. Med. 203 (1989) 11

    Google Scholar 

  3. K. PIEKARSKI and M. MUNRO, Nature 269 (1977) 80

    Article  CAS  Google Scholar 

  4. A. F. MAK, D. T. HUANG, J. D. ZHANG and P. TONG, J. Biomech. 30 (1997) 11

    Article  CAS  Google Scholar 

  5. T. H. LIM and J. H. HONG, J. Musculoskeletal Res. 2 (1998) 167

    Article  Google Scholar 

  6. J. L. NOWINSKI and F. C. DAVIS, Math. Biosci. 8 (1970) 397

    Article  Google Scholar 

  7. J. L. NOWINSKI, Acta Mech. 13 (1972) 281

    Article  Google Scholar 

  8. J. A. OCHOA, A. P. SANDERS, D. A. HECK and B. M. HILLBCRRY, J. Biomech. Eng. 113 (1991) 259

    Article  CAS  Google Scholar 

  9. J. A. OCHOA and B. M. HILLBERRY, Trans. Orthop. Res. Soc. 17 (1992) 163

    Google Scholar 

  10. S. WEINBAUM, S. C. COWIN and Y. ZENG, in “Advances in Bioengineering”, edited by R. Vanderby Jr. (American Society of Mechanical Engineers, New York, 1991) p. 317

  11. D. ZHANG and S. C. COWIN, J. Mech. Phys. Solids 42 (1994) 1575

    Article  Google Scholar 

  12. S. HUGHES, R. DAVIES, R. KHAN and P. KELLY, Clinl. Orthop. Relat. Res. 134 (1978) 332

    Google Scholar 

  13. J. NAGATOMI, B. P. ARULANANDAM, D. W. METZGER, A. MEUNIER and R. BIZIOS, J. Biomech. Eng. 123 (2002) 308

    Article  Google Scholar 

  14. T. M. L. KNOTHE and U. KNOTHE, J. Biomech. 33 (2000) 247

    Article  Google Scholar 

  15. L. WANG, C. CIANI, S. B. DOTY and S. P. FRITTON, Bone 34 (2004) 499

    Article  Google Scholar 

  16. S. WEINBAUM, S. C. COWIN and Y. ZENG, J. Biomech. 27 (1994) 339

    Article  CAS  Google Scholar 

  17. R. M. DILLAMAN, R. D. ROER and D. M. GAY, J. Biomech. 24(S1) (1991) 163

    Article  Google Scholar 

  18. S. C. COWIN, L. MOSS-SALENTIJN and M. L. MOSS, J. Biomech. Eng. 113 (1991) 191

    Article  CAS  Google Scholar 

  19. J. A. SPADARO, in “Bone”, edited by B. K. Hall (CRC Press, Boca Raton, Florida, 1993) p. 37

  20. D. GROSS and W. S. WILLIAMS, J. Biomech. 15 (1982) 277

    Article  CAS  Google Scholar 

  21. D. PIENKOWSKI and S. R. POLLACK, J. Orthop. Res. 1 (1983) 30

    Article  CAS  Google Scholar 

  22. S. R. POLLACK, in “Bone Mechanics Handbook”, edited by S. C. Cowin (CRC Press, Boca Raton, Florida, 2001) pp. 21–24

  23. C. A. BASSETT and R. O. BECKER, Science 137 (1962) 1063

    Article  CAS  Google Scholar 

  24. R. B. BORGENS, Science 225 (1984) 478

    Article  CAS  Google Scholar 

  25. T. P. HARRIGAN and J. J. HAMILTON, J. Biomech. 26 (1993) 183

    Article  CAS  Google Scholar 

  26. L. A. MACGINITIE, G. D. STANLEY, W. A. BIEBER and D. D. WU, J. Biomech. 30 (1997) 1133

    Article  CAS  Google Scholar 

  27. B. R. BECK, Y-X. QIN, K. J. MCLEOD and M. W. OTTER, Calcif. Tissue Int. 71 (2002) 335

    Article  CAS  Google Scholar 

  28. T. M. KEAVENY, X. E. GUO, E. F. WACHTEL, T. A. MCMAHON and W. C. HAYES, J. Biomech. 27 (1994) 1127

    Article  CAS  Google Scholar 

  29. K. WATANABE, T. WATANABE, H. WATANABE, H. ANDO, T. ISHIKAWA and K. KOBAYASHI, IEEE Trans. Biomed. Eng. 52 (2005) 2100

    Article  Google Scholar 

  30. J. H. HONG, Proc. Inst. Mech. Eng. [H]: J. Eng. Med. 218 (2004) 375

    Google Scholar 

  31. R. R. COOPER, J. W. MILGRAM and R. A. ROBINSON, J. Bone Joint Surg. 48A (1966) 1239

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Special Research Center Support Program of Medical Devices and Supplies Development Grants (A020603) of Korean Ministry of Health and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghwa Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J., Ko, S.O., Khang, G. et al. Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates. J Mater Sci: Mater Med 19, 2589–2594 (2008). https://doi.org/10.1007/s10856-007-3241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3241-0

Keywords

Navigation