Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates

  • Junghwa Hong
  • Sang Ok Ko
  • Gon Khang
  • Mu Seong Mun


Cortical bone is a composite material consisting of a porous elastic solid and viscous fluid. It is well known that the intraosseous fluid circulates as a result of a bone fluid pressure gradient in the porous space of the cortical bone. When a time-dependent mechanical load is applied to the bone, intraosseous fluid flow occurs through the interconnected pore space in the bone. Bone fluid flow leads to a strain generated streaming potential (SGP). However, there is no experimental study on the relationship between the generation of intraosseous pressure and the SGP. The purpose of this study was to obtain the relationship between SGP and intraosseous pressure generations in cortical bone. In order to understand the issue, a drained, one-dimensional experimental setup for fluid-filled cortical bone samples with four different strain rates was used to simultaneously measure the intraosseous pressure and SGP. The results revealed a significant correlation (r = 0.98, p = 0.02) between the generation of the SGP and the intraosseous pressure, which indicates that an intraosseous pressure gradient produces a SGP in cortical bone.


Cortical Bone Femoral Diaphysis Bone Sample Haversian Canal Applied Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was sponsored by the Special Research Center Support Program of Medical Devices and Supplies Development Grants (A020603) of Korean Ministry of Health and Welfare.


  1. 1.
    S. C. COWIN, J. Biomech. 32 (1999) 217CrossRefGoogle Scholar
  2. 2.
    J. D. BRYANT, T. DAVID, P. H. GASKEIL, S. KING and G. LOND, Proc. Inst. Mech. Eng. [H]: J. Eng. Med. 203 (1989) 11Google Scholar
  3. 3.
    K. PIEKARSKI and M. MUNRO, Nature 269 (1977) 80CrossRefGoogle Scholar
  4. 4.
    A. F. MAK, D. T. HUANG, J. D. ZHANG and P. TONG, J. Biomech. 30 (1997) 11CrossRefGoogle Scholar
  5. 5.
    T. H. LIM and J. H. HONG, J. Musculoskeletal Res. 2 (1998) 167CrossRefGoogle Scholar
  6. 6.
    J. L. NOWINSKI and F. C. DAVIS, Math. Biosci. 8 (1970) 397CrossRefGoogle Scholar
  7. 7.
    J. L. NOWINSKI, Acta Mech. 13 (1972) 281CrossRefGoogle Scholar
  8. 8.
    J. A. OCHOA, A. P. SANDERS, D. A. HECK and B. M. HILLBCRRY, J. Biomech. Eng. 113 (1991) 259CrossRefGoogle Scholar
  9. 9.
    J. A. OCHOA and B. M. HILLBERRY, Trans. Orthop. Res. Soc. 17 (1992) 163Google Scholar
  10. 10.
    S. WEINBAUM, S. C. COWIN and Y. ZENG, in “Advances in Bioengineering”, edited by R. Vanderby Jr. (American Society of Mechanical Engineers, New York, 1991) p. 317Google Scholar
  11. 11.
    D. ZHANG and S. C. COWIN, J. Mech. Phys. Solids 42 (1994) 1575CrossRefGoogle Scholar
  12. 12.
    S. HUGHES, R. DAVIES, R. KHAN and P. KELLY, Clinl. Orthop. Relat. Res. 134 (1978) 332Google Scholar
  13. 13.
    J. NAGATOMI, B. P. ARULANANDAM, D. W. METZGER, A. MEUNIER and R. BIZIOS, J. Biomech. Eng. 123 (2002) 308CrossRefGoogle Scholar
  14. 14.
    T. M. L. KNOTHE and U. KNOTHE, J. Biomech. 33 (2000) 247CrossRefGoogle Scholar
  15. 15.
    L. WANG, C. CIANI, S. B. DOTY and S. P. FRITTON, Bone 34 (2004) 499CrossRefGoogle Scholar
  16. 16.
    S. WEINBAUM, S. C. COWIN and Y. ZENG, J. Biomech. 27 (1994) 339CrossRefGoogle Scholar
  17. 17.
    R. M. DILLAMAN, R. D. ROER and D. M. GAY, J. Biomech. 24(S1) (1991) 163CrossRefGoogle Scholar
  18. 18.
    S. C. COWIN, L. MOSS-SALENTIJN and M. L. MOSS, J. Biomech. Eng. 113 (1991) 191CrossRefGoogle Scholar
  19. 19.
    J. A. SPADARO, in “Bone”, edited by B. K. Hall (CRC Press, Boca Raton, Florida, 1993) p. 37Google Scholar
  20. 20.
    D. GROSS and W. S. WILLIAMS, J. Biomech. 15 (1982) 277CrossRefGoogle Scholar
  21. 21.
    D. PIENKOWSKI and S. R. POLLACK, J. Orthop. Res. 1 (1983) 30CrossRefGoogle Scholar
  22. 22.
    S. R. POLLACK, in “Bone Mechanics Handbook”, edited by S. C. Cowin (CRC Press, Boca Raton, Florida, 2001) pp. 21–24Google Scholar
  23. 23.
    C. A. BASSETT and R. O. BECKER, Science 137 (1962) 1063CrossRefGoogle Scholar
  24. 24.
    R. B. BORGENS, Science 225 (1984) 478CrossRefGoogle Scholar
  25. 25.
    T. P. HARRIGAN and J. J. HAMILTON, J. Biomech. 26 (1993) 183CrossRefGoogle Scholar
  26. 26.
    L. A. MACGINITIE, G. D. STANLEY, W. A. BIEBER and D. D. WU, J. Biomech. 30 (1997) 1133CrossRefGoogle Scholar
  27. 27.
    B. R. BECK, Y-X. QIN, K. J. MCLEOD and M. W. OTTER, Calcif. Tissue Int. 71 (2002) 335CrossRefGoogle Scholar
  28. 28.
    T. M. KEAVENY, X. E. GUO, E. F. WACHTEL, T. A. MCMAHON and W. C. HAYES, J. Biomech. 27 (1994) 1127CrossRefGoogle Scholar
  29. 29.
    K. WATANABE, T. WATANABE, H. WATANABE, H. ANDO, T. ISHIKAWA and K. KOBAYASHI, IEEE Trans. Biomed. Eng. 52 (2005) 2100CrossRefGoogle Scholar
  30. 30.
    J. H. HONG, Proc. Inst. Mech. Eng. [H]: J. Eng. Med. 218 (2004) 375Google Scholar
  31. 31.
    R. R. COOPER, J. W. MILGRAM and R. A. ROBINSON, J. Bone Joint Surg. 48A (1966) 1239Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Junghwa Hong
    • 1
  • Sang Ok Ko
    • 1
  • Gon Khang
    • 2
  • Mu Seong Mun
    • 3
  1. 1.Biomechatronics Laboratory, Department of Control and Instrumentation EngineeringKorea UniversityYoungi-GunRepublic of Korea
  2. 2.Department of Biomedical EngineeringKyung Hee UniversityYoungin-CityRepublic of Korea
  3. 3.Korea Orthopedics and Rehabilitation Engineering CenterIncheonRepublic of Korea

Personalised recommendations