Advertisement

Characterization of alkali-treated collagen gels prepared by different crosslinkers

  • Hirofumi Saito
  • Shun Murabayashi
  • Yoshinori Mitamura
  • Tetsushi Taguchi
Article

Abstract

We have developed a naturally-derived crosslinker named malic acid derivative (MAD). In the present study, we prepared alkali-treated collagen (AlCol) gels with different crosslinkers including MAD and commercially available crosslinkers such as 1-ethyl-3-(3(′-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). There are named as AlCol-MAD, AlCol-EDC, and AlCol-GA. We then compared their physicochemical properties. The residual amino groups in AlCol-MAD were not detected at MAD concentrations higher than 30 mM. On the other hand, the residual amino groups in AlCol-EDC and AlCol-GA were detected at crosslinker concentrations of 30 mM. The swelling ratios of AlCol-MAD, AlCol-EDC, and AlCol-GA decreased with increasing crosslinker concentration. Enzymatic degradation rate of AlCol-GA was slower than that of AlCol-MAD and AlCol-EDC. The cytotoxicity of MAD was clearly lower than that of EDC and GA. The number of adhered L929 on AlCol-MAD was higher than on AlCol-EDC and AlCol-GA after incubation for 1 day. After the culture for 3 and 7 days, excellent growth of L929 was observed on AlCol-MAD. These results suggested that MAD was excellent crosslinker for the reactivity with amino groups and cytocompatibility. Therefore, the resulting AlCol-MAD has potential for various biomedical applications like tissue engineering scaffolds and carrier for drug delivery systems.

Keywords

Enzymatic Degradation Crosslinking Density Tissue Engineering Scaffold L929 Fibroblast Crosslinker Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported in part by Innovative Technology Research Grant from Japan Science and Technology Agency (JST), Japan, and the Coordination Found for Prompting Science and Technology for Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (Development of artificial organs utilizing with Nanotechnology and materials science) and Industrial Technology Research Grant Program in ‘04 from New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References

  1. 1.
    C. J. DOILLON and F. H. SILVE, Biomaterials 7 (1986) 3CrossRefGoogle Scholar
  2. 2.
    M. E. NIMNI, in: “Encyclopedic Handbook of Biomaterials and Engineering. Part A: Materials”, edited by D. L. WISE (Marcel Dekker, New York, 1995) p. 1229Google Scholar
  3. 3.
    S. T. LI, in “The Biomedical Engineering Handbook”, edited by J. D. BRONZINO (CRC Press in Corporation with IEEE Press, Boca Raton, FL, 1995) p. 627Google Scholar
  4. 4.
    M. J. B. WISSINK, R. BEERNINK, J. S. PIEPER, A. A. POOT, G. H. M. ENGBERS, T. BEUGELING, W. G. AKEN and J. FEIJEN, Biomaterials 22 (2001) 151CrossRefGoogle Scholar
  5. 5.
    R. GHISELLI, A. GIACOMETTI, L. GOFFI, O. CIRIONI, F. MOCCHEGIANI, F. ORLANDO, A. M. PAGGI, E. PETRELLI, G. SCALISE and V. SABA, J. Surg. Res. 99 (2001) 316CrossRefGoogle Scholar
  6. 6.
    H. W. SUNG, Y. CHANG, C. T. CHIU, C. N. CHEN and H. C. LIANG, Biomaterials 20 (1999) 1759CrossRefGoogle Scholar
  7. 7.
    S. M. WELLS and M. S. SACKS, Biomaterials 23 (2002) 2389CrossRefGoogle Scholar
  8. 8.
    A. SANO, M. MAEDA, S. NAGAHARA, T. OCHIYA, K. HONMA, H. ITOH, T. MIYATA and K. FUJIOKA, Adv. Drug. Deliv. Rev. 55 (2003) 1651CrossRefGoogle Scholar
  9. 9.
    A. JAYAKRISHNAN and S. R. JAMEELA, Biomaterials 17 (1996) 471CrossRefGoogle Scholar
  10. 10.
    S. B. LEE, Y. H. KIM, M. S. CHONG and Y. M. LEE, Biomaterials 25 (2004) 2309CrossRefGoogle Scholar
  11. 11.
    J. HART, D. SILCOCK, S. GUNNIGLE, B. CULLEN, N. D. LIGHT and P. W. WATT, Int. J. Biochem. Cell. Biol. 34 (2002) 1557CrossRefGoogle Scholar
  12. 12.
    G. CHEN, T. SATO, M. SAKANE, H. OHGUSHI, T. USHIDA, J. TANAKA and T. TATEISHI, Mater. Sci. Eng. C 24 (2004) 373CrossRefGoogle Scholar
  13. 13.
    G. CHEN, T. SATO, M. SAKANE, H. OHGUSHI, T. USHIDA, J. TANAKA and T. TATEISHI, Mater. Sci. Eng. C 24 (2004) 861CrossRefGoogle Scholar
  14. 14.
    Q. LU, K. GANESAN, D. T. SIMIONESCU and N. R. VYAVAHARE, Biomaterials 25 (2004) 5227CrossRefGoogle Scholar
  15. 15.
    A. BIGI, G. COJAZZI, S. PANZAVOLTA, K. RUBINI and N. ROVERI, Biomaterials 22 (2001) 763CrossRefGoogle Scholar
  16. 16.
    J. E. GOUGH, C. A. SCOTCHFORD and S. DOWNES, J. Biomed. Mater. Res. 61 (2002) 121CrossRefGoogle Scholar
  17. 17.
    S. N. JAN PARK, J. C. PARK, H. O. KIM, M. J. SONG and H. SUH, Biomaterials 23 (2002) 1205CrossRefGoogle Scholar
  18. 18.
    K. BILLAR, J. MURRAY, D. LAUDE, G. ABRAHAM and N. BACHRACH, J. Biomed. Mater. Res. 56 (2001) 101CrossRefGoogle Scholar
  19. 19.
    P. B. VAN WACHEM, R. ZEEMAN, P. J. DIJKSTRA, J. FEIJEN, M. HENDRINKS, P. T. CAHALAN and M. J. A. VAN LUYN, J. Biomed. Mater. Res. 47, 270 (1999)CrossRefGoogle Scholar
  20. 20.
    F. DE LUSTRO, R. A. CONDELL, M. A. NGUYEN and J. M. MCPHERSON, J. Biomed. Mater. Res. 20 (1986) 109CrossRefGoogle Scholar
  21. 21.
    A. COOKE, R. F. OLIVER and M. EDWARD, Br. J. Exp. Pathol. 64 (1983) 172Google Scholar
  22. 22.
    G. GOISSIS, E. MARCANTONIO JR., R. A. MARCANTONIO, R. C. LIA, D. C. CANCIAN and W. M. DE CARVALHO, Biomaterials 20 (1999) 27CrossRefGoogle Scholar
  23. 23.
    J. M. MCPHERSON, S. SAWAMURA and R. ARMSTRON, J. Biomed. Mater. Res. 20 (1986) 93CrossRefGoogle Scholar
  24. 24.
    L. H. H. HUANG-LEE, D. T. CHEUNG and M. E. NIMNI, J. Biomed. Mater. Res. 24 (1990) 1185CrossRefGoogle Scholar
  25. 25.
    R. J. LEVY, F. J. SCHOEN, F. S. SHERMAN, J. NICHOLS, M. A. HAWEY and S. A. LUND, Am. J. Pathol. 122 (1986) 71Google Scholar
  26. 26.
    R. J. SCHOEN and R. J. LEVY, Am. J. Pathol. 123 (1986) 134Google Scholar
  27. 27.
    J. E. LEE, J. C. PARK, Y. S. HWANG, J. K. KIM, J. G. KIM and H. SUH, Yonsei Med. J. 42 (2001) 172Google Scholar
  28. 28.
    K. S. WEADOCK, E. J. MILLER, E. L. KEUFFEL and M. G. DUNN, J. Biomed. Mater. Res. 32 (1996) 221CrossRefGoogle Scholar
  29. 29.
    S. D. GORHAM, N. D. LIGHT, A. M. DIAMOND, M. J. WILLINS, A. J. BAILEY, T. J. WESS and N. J. LESLIE, Int. J. Biol. Macromol. 14 (1992) 129CrossRefGoogle Scholar
  30. 30.
    T. TAGUCHI, H. SAITO, M. IWASASHI, M. SAKANE, S. KAKINOKI and J. TANAKA, J. Nanosci. Nanotechnol. 7 (2007) 742CrossRefGoogle Scholar
  31. 31.
    T. TAGUCHI, H. SAITO, Y. UCHIDA, M. SAKANE, H. KOBAYASHI, K. KATAOKA and J. TANAKA, Mater. Sci. Eng. C 24 (2004) 775CrossRefGoogle Scholar
  32. 32.
    H. SAITO, T. TAGUCHI, H. AOKI, K. KATAOKA, S. MURABAYASHI, Y. MITAMURA, J. TANAKA and T. TATEISHI, Acta Biomater. 3 (2007) 89CrossRefGoogle Scholar
  33. 33.
    H. SAITO, T. TAGUCHI, H. KOBAYASHI, K. KATAOKA, J. TANAKA, S. MURABAYASHI and Y. MITAMURA, Mater. Sci. Eng. C 24 (2004) 781CrossRefGoogle Scholar
  34. 34.
    T. TAGUCHI, H. SAITO, M. IWASASHI, M. SAKANE, S. KAKINOKI, N. OCHIAI and T. TATEISHI, Key. Eng. Mater. 330–332 (2007) 1339CrossRefGoogle Scholar
  35. 35.
    W. A. BUBNIS and C. M. OFNER III, Anal. Biochem. 207 (1992) 129CrossRefGoogle Scholar
  36. 36.
    S. N. PARK, J. C. PARK, H. O. KIM, M. J. SONG and H. SUH, Biomaterials 23 (2002) 1205CrossRefGoogle Scholar
  37. 37.
    J. RANKE, K. MOLTER, F. STOCK, U. BOTTIN-WEBER, J. POCZOBUTT, J. HOFFMANN, B. ONDRUSCHKA, J. FILSER and B. JASTORFF, Ecotox. Environ. Safe. 60 (2005) 350CrossRefGoogle Scholar
  38. 38.
    Z. ZHANG, R. ROY, F. J. DUGRE, D. TESSIER and L. H. DAO, J. Biomed. Mater. Res. 57, 63 (2001)CrossRefGoogle Scholar
  39. 39.
    K. E. PFITZNER and J. G. MOFFATT, J. Am. Chem. Soc. 87 (1965) 5661CrossRefGoogle Scholar
  40. 40.
    L. H. H. OLDE DAMINK, P. J. DIJKSTRA, M. J. A. VAN LUYN, P. B. VAN WACHEM, P. NIEUWENHUIS and J. FEIJEN, Biomaterials 17 (1996) 765CrossRefGoogle Scholar
  41. 41.
    K. ULUBAYRAM, E. AKSU, S. I. D. GURHAN, K. SERBETCI and N. HASIRCI, J. Biomater. Sci. Polymer Edn. 13 (2002) 1203CrossRefGoogle Scholar
  42. 42.
    K. ULUBAYRAM, E. AKSU, S. I. D. GURHAN, K. SERBETCI and N. HASIRCI, J. Biomater. Sci. Polymer Edn. 13 (2002) 1203CrossRefGoogle Scholar
  43. 43.
    L. H. H. OLDE DAMINK, P. J. DIJKSTRA, M. J. A. VAN LUYN, P. B. VAN WACHEM, P. NIEUWENHUIS and J. FEIJEN, J. Mater. Sci. Mater. Med. 6 (1995) 460CrossRefGoogle Scholar
  44. 44.
    A. MONTEMBAULT, C. VITON and A. DOMARD, Biomaterials 26 (2005) 1633CrossRefGoogle Scholar
  45. 45.
    V. CHARULATHA and A. RAJARAM, Biomaterials 24 (2003) 759CrossRefGoogle Scholar
  46. 46.
    K. ULUBAYRAM, E. AKSU, S. I. D. GURHAN, K. SERBETCI and N. HASIRCI, J. Biomater. Sci. Polymer Edn. 13 (2002) 1203CrossRefGoogle Scholar
  47. 47.
    G. A. DIGENIS, T. B. GOLD and V. P. SHAH, J. Pharm. Sci. 83 (1994) 915CrossRefGoogle Scholar
  48. 48.
    A. J. KUIJPERS, G. H. M. ENGBERS, J. FEIJEN, S. C. DE SMEDT, T. K. L. MEYVIS, J. DEMEESTER, J. KRIJGSVELD, S. A. J. ZAAT and J. DANKERT, Macromolecules 32 (1999) 3325CrossRefGoogle Scholar
  49. 49.
    J. HARDIN-YOUNG, R. M. CARR, G. J. DOWNING and K. D. CONDON, Biotechnol. Bioeng. 49 (1996) 675CrossRefGoogle Scholar
  50. 50.
    J. H. LEE, A. K. GO, S. H. OH, K. E. LEE and S. H. YUK, Biomaterials 26 (2005) 671CrossRefGoogle Scholar
  51. 51.
    C. R. NUTTELMAN, S. M. HENRY and K. ANSETH, Biomaterials 23 (2002) 3617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hirofumi Saito
    • 1
    • 2
  • Shun Murabayashi
    • 1
  • Yoshinori Mitamura
    • 1
  • Tetsushi Taguchi
    • 3
  1. 1.Graduate School of Information Science and TechnologyThe University of HokkaidoSapporoJapan
  2. 2.Furuuchi Chemical CorporationTokyoJapan
  3. 3.Biomaterials CenterNational Institute for Materials ScienceTsukuba, IbarakiJapan

Personalised recommendations