Calcium phosphate formation on plasma immersion ion implanted low density polyethylene and polytetrafluorethylene surfaces

  • Alexey Kondyurin
  • Emilia Pecheva
  • Lilyana Pramatarova


The flexible structure of polymers has enabled them to be useful in a wide variety of medical applications due to the possibility to tailor their properties to suit desired applications. For a long time, there has been an increasing interest in utilizing polymers as matrices for calcium phosphate-based composites with applications in hard tissue implants. On the other side, polymers with application as heart valves, urea catheters and artificial vessels present a case where the formation of minerals (namely calcification) should be avoided. The modification of polymer surfaces by various ion beam treatments for reducing the calcification, as for example plasma immersion ion implantation (PIII), is well known and has a long time effect. This work is part of a wider investigation of the ability of plasma immersion ion implanted polymers to induce calcium phosphate formation from an aqueous solution resembling the human blood plasma. In the experiment described in this paper, topographical and chemical changes were inserted on the surfaces of two conventional polymers (low density polyethylene and polytetrafluorethylene) by PIII with nitrogen ions, and under conditions mimicking the natural mineral formation processes. The effect of the plasma modification on the calcium phosphate nucleation and growth from the aqueous solution was ambiguous. We suppose that the complex combination of surface characteristics influenced the ability of the plasma treated polymer films to induce the formation of a calcium phosphate layer.


Contact Angle PTFE Calcium Phosphate Simulated Body Fluid LDPE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported partly by the Bulgarian National Scientific Research Fund through Grant L1213/2002. Plasma implantation chamber at the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, Dresden, Germany was used in the experiment.


  1. 1.
    P. FAVIA, E. SARDELLA, R. GRISTINA and R. D’AGOSTINO, Surf. Coat. Technol. 169–170 (2003) 707CrossRefGoogle Scholar
  2. 2.
    P. K. CHU, J. Y. CHEN, L. P. WANG, N. HUANG and J. JAGUR-GRODZINSKI, e-Polymers 012 (2003) 1Google Scholar
  3. 3.
    H. PLANK, I. SYRE, M. DAUNER and G. EGBERS, in "Polyurethanes In Biomedical Engineering", Vol ii (Elsevier, Amsterdam, 1987)Google Scholar
  4. 4.
    P. DIDISHEIM and J. WATSON, in “Biomaterials Science: An Introduction to Materials in Medicine”, Edited by: B. RATNER, A. HOFFMAN, F. SCHOEN and J. LEMONS (Academic Press Inc., San Diego, CA 1996)Google Scholar
  5. 5.
    H. LEE, S. KIM and G. KHANG, in “The Biomedical Engineering Handbook”, Edited by: J. BRONZINO (CRC Press, 1995) p. 581Google Scholar
  6. 6.
    P. CHUA, J. CHENA, L. WANGA and N. HUANG, Mater. Sci. Eng. R. 36 (2002) 143CrossRefGoogle Scholar
  7. 7.
    K. WALACHOVA, V. SVORCIK, L. BACAKOVA and V. HNATOWICZ, Biomaterials 23 (2002) 2989CrossRefGoogle Scholar
  8. 8.
    C. SATRIANO, S. CARNAZZA, S. GUGLIELMINO and G. MARLETTA, Nucl. Instrum. Methods Phys. Res. B. 208 (2003) 287CrossRefGoogle Scholar
  9. 9.
    D. CASTNER and B. RATNER, Surf. Sci. 500(1–3) (2002) 28CrossRefGoogle Scholar
  10. 10.
    J. ANDRADE, in “Surface and Interfacial Aspects of Biomedical Polymers”, Edited by: J. ANDRADE, Vol. 2. (Plenum Press, New York, 1985)Google Scholar
  11. 11.
    J. BRASH, in “Biocompatible Polymers, Metals and Composites”, Edited by: M. SZYCHER (ED) (Technomic, Lancaster, 1983)Google Scholar
  12. 12.
    P. DUCHEYNE and Q. QUI, Biomaterials 20 (1999) 2287CrossRefGoogle Scholar
  13. 13.
    R. WUTHIER and J. CUMMINS, Biochim. Biophys. Acta 337 (1974) 50Google Scholar
  14. 14.
    H. LOWENSTAM and S. WEINER, in "On Biomineralization" (Oxford University Press, Oxford, 1989)Google Scholar
  15. 15.
    G. NANCOLLAS and W. WU, J. Cryst. Growth 211 (2000) 137CrossRefGoogle Scholar
  16. 16.
    L. CAO, E. BOEVE, W. DE BRUIJN, W. ROBERTSON and F. SCHRODER, Scan. Microsc. 7(3) (1993) 1049Google Scholar
  17. 17.
    M. TIRRELL, E. KOKKOLI and M. BIESALSKI, Surf. Sci. 500 (2002) 61CrossRefGoogle Scholar
  18. 18.
    S. DAWIDS, in “Test Procedures for the Blood Compatibility of Biomaterials”, Edited by: D. S. KLUWER (Academic Publisher, The Netherlands, 1993), p. 3Google Scholar
  19. 19.
    T. KOKUBO and H. TAKADAMA, Biomaterials 27 (2006) 2907CrossRefGoogle Scholar
  20. 20.
    E. A. VOGLER, in “Wettability, Surfactant Science Series”, Edited by: J. BERG and M. DEKKER, Vol 49 (New York, 1993), p 184Google Scholar
  21. 21.
    G. MESYATS, Yu. KLYACHKIN, N. GAVRILOV and A. KONDYURIN, Vacuum 52 (1999) 285CrossRefGoogle Scholar
  22. 22.
    F. HYDE, M. ALBERG and K. SMITH, J. Ind. Microbiol. Biotechnol. 19 (1997) 142CrossRefGoogle Scholar
  23. 23.
    J. HUNTSBERGER in “Contact Angle: Wettability and Adhesion, Advances in Chemistry Series”, Edited by: R. GOULD (ACS 1964)Google Scholar
  24. 24.
    A. KONDYURIN, V. KARMANOV and R. GUENZEL, Vacuum 64 (2002) 105CrossRefGoogle Scholar
  25. 25.
    J. ZHANG, X. YU, H. LI and X. LIU, Appl. Surf. Sci. 185 (2002) 255CrossRefGoogle Scholar
  26. 26.
    P. C. PAINTER, M. M. COLEMAN and J. L. KOENIG, in "The Theory of Vibrational Spectroscopy and its Application to Polymeric Materials" (Wiley, New York, 1982)Google Scholar
  27. 27.
    G. MESYATS, Y. KLYACHKIN, N. GAVRILOV, V. MIZGULIN, R. YAKUSHEV and A. KONDYURIN, Vacuum 47(9) (1996) 1085CrossRefGoogle Scholar
  28. 28.
    L. PRAMATAROVA, E. PECHEVA, R. PRESKER, M. STUTZMANN, M. MAITZ and M. PHAM, J. Optoelectr. Adv. Mater. 7(1) (2005) 469Google Scholar
  29. 29.
    L. PRAMATAROVA, E. PECHEVA, T. PETROV, R. PRESKER and M. STUTZMANN, Proc. SPIE 5830 (2005) 419CrossRefGoogle Scholar
  30. 30.
    L. PRAMATAROVA, E. PECHEVA, D. NESHEVA, Z. LEVI, Z. ANEVA, R. PRAMATAROVA, U. BISMAYER and T. PETROV, Phys. Stat. Sol. C 0(3) (2003) 1070CrossRefGoogle Scholar
  31. 31.
    I. ALFERIEV, S. STACHELEK, Zh. LU, A. FU, T. SELLARO, J. CONNOLLY, R. BIANCO, M. SACKS and R. LEVY, J. Biomed. Mater. Res. A 66 (2003) 385CrossRefGoogle Scholar
  32. 32.
    Handbook of Optics, in “Fundamentals, Techniques and Design”, Edited by: M. BASS, Vol 1 (McGRAW-HILL, Inc., 1995), p. 9.7Google Scholar
  33. 33.
    L. SOCRATES, in "Infrared Characteristic Group Frequencies" (Wiley, New York, 1980)Google Scholar
  34. 34.
    J. C. ELLIOTT, in "Structure and Chemistry of Apatites and Other Calcium Orthophosphates" (Elsevier Science, Amsterdam, 1994)Google Scholar
  35. 35.
    D. E. PACKHAM, in “1st International. Congress on Adhesion Science and Technology: Invited Papers”, Edited by: W. J. VAN OOIJ and H. R. ANDERSON Jr (VSP Publishers, Utrecht, 1998) p. 81Google Scholar
  36. 36.
    Ch. OEHR, Nucl. Instrum. Methods Phys. Res. B 208 (2003) 40CrossRefGoogle Scholar
  37. 37.
    B. PAMPLIN, ed., Crystal Growth (Pergamon Press, 1980)Google Scholar
  38. 38.
    V. VASILETS, A. KUZNETSOV and V. SEVASTIANOV, J. Biomed. Mater. Res. A 69 (2004) 428CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexey Kondyurin
    • 1
  • Emilia Pecheva
    • 2
  • Lilyana Pramatarova
    • 2
  1. 1.School of Physics, A28University of SydneySydneyAustralia
  2. 2.Institute of Solid State PhysicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations