Skip to main content
Log in

Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fused deposition modelling (FDM) is an extrusion based Rapid prototyping (RP) technique which can be used to fabricate tissue engineering scaffolds. The present work focuses on the study of the melt flow behaviour (MFB) of Poly-ε-caprolactone (PCL) as a representative biomaterial, on the FDM. The MFB significantly affects the quality of the scaffold which depends not only on the pressure gradient, its velocity, and the temperature gradients but also physical properties like the melt temperature and rheology. The MFB is studied using two methods: mathematical modelling and finite element analysis (FEA) using Ansys®. The MFB is studied using accurate channel geometry by varying filament velocity at the entry and by varying nozzle diameters and angles at the exit. The comparative results of both mathematical modelling and FEA suggest that the pressure drop and the velocities of the melt flow depend on the flow channel parameters. One inference of particular interest is the temperature gradient of the PCL melt, which shows that it liquefies within 35% of the channel length. These results are invaluable to better understand the MFB of biomaterials that affects the quality of the scaffold built via FDM and can also be used to predict the MFB of other biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. F. YANG, K. F. LEONG, Z. DU and C. K. CHUA, Tiss. Eng. 7(6) (2001) 679

    Article  CAS  Google Scholar 

  2. S. F. YANG, K. F. LEONG, Z. DU and C. K. CHUA, Tiss. Eng. 8(1) (2002) 1

    Article  CAS  Google Scholar 

  3. W. Y. YEONG, C. K. CHUA, K. F. LEONG and M. CHANDRASEKARAN, Trend Biotechnol. 22(12) (2004) 643

    Article  CAS  Google Scholar 

  4. C. K. CHUA, K. F. LEONG and C. S. LIM, Rapid Prototyping, Principles and Applications, 2nd edn. (World Scientific Publishing Co.Pte Ltd, Singapore, 2003)

    Google Scholar 

  5. K. F. LEONG, C. M. CHEAH and C. K. CHUA, Biomaterials 24(13) (2003) 2363

    Article  CAS  Google Scholar 

  6. M. H. TOO, K. F. LEONG, C. K. CHUA, Z. DU, S. F. YANG, S. L. HO and C. M. CHEAH, Int. J. Adv. Manufact. Technol. 19(3) (2002) 217

    Google Scholar 

  7. K. C. ANG, K. F. LEONG, C. K. CHUA and M. CHANDRASEKARAN, Rapid Prototyping J. 12(2) (2006) 100

    Article  Google Scholar 

  8. H. S. RAMANATH, M. CHANDRASEKARAN, C. K. CHUA, K. F. LEONG and K. D. SHAH, Key Eng. Mater. 334-335 (2007) 1241

    CAS  Google Scholar 

  9. K. C. ANG, K. F. LEONG, C. K. CHUA and M. CHANDRASEKARAN, J. Biomed. Mater. Res.: Part A. 80A(3) (2007) 655

    Article  CAS  Google Scholar 

  10. I. ZEIN, D. W. HUTMACHER, K. C. TAN and S. H. TEOH, Biomaterials 23 (2002) 1169

    Article  CAS  Google Scholar 

  11. F. WANG, L. SHOR, A. DARLING, S. KHALIL, W. SUN, S. GUÈCËERI and A. LAU, Rapid Prototyping J. 10/1 (2001) 42

    Google Scholar 

  12. A. L. DARLING and W. SUN, J. Biomed. Mater. Res. Part B: Appl. Biomater. 70B (2004) 311

    Article  CAS  Google Scholar 

  13. S. KHALIL, J. NAM and W. SUN, Rapid Prototyping J. 11(1) (2005) 9

    Article  Google Scholar 

  14. G. CIARDELLI, V. CHIONO, C. CRISTALLINI, N. BARBANI, A. AHLUWALIA, G. VOZZI, A. PREVITI, G. TANTUSSI and P. GIUSTI, J. Mater. Sci.: Mater. Med. 15 (2004)305

    Article  CAS  Google Scholar 

  15. R. C. THOMSON, M. J. YASZEMSKI, J. M. POWERS, and A. G. MIKOS, J. Biomater. Sci.: Polym. Ed. 7(1) (1995) 23

    Article  CAS  Google Scholar 

  16. Y. IKADA and H. TSUJI, Macromol. Rapid Commun. 21 (2000) 117

    Article  CAS  Google Scholar 

  17. FDM 3000 system documentation Startasys Inc., USA (2001)

  18. A. BELLINI, Fused deposition of ceramics: A comprehensive experimental, analytical and computational study of material behaviour, fabrication process and equipment design. PhD thesis, (Drexel University, USA, 2002)

  19. K. Y. JIANG and Y. H. GU, Key Eng. Mater. 259–260 (2004) 667

    Article  Google Scholar 

  20. M. P. GROSVENOR and J. N. STANIFORTH, Int. J. Pharmaceut. 135 (1996) 103

    Article  CAS  Google Scholar 

  21. Z. PINGPING, Y. HAIYANG and W. SHIQIANG, Eur. Polym. J. 34(1) (1998) 91

    Article  Google Scholar 

  22. W. MICHAELI, Extrusion Dies: Design and Engineering Computations. (Hanser Publications, Munich, 1984) pp. 10

    Google Scholar 

  23. C. RAUWENDAAL, Polymer Extrusion, 3rd edn. (SPE 1994) pp. 182

  24. ANSYS element reference manual, Ansys Inc., USA (2004)

  25. Asm Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials Section: Volume 2. (ASM International, USA, 1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Ramanath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanath, H.S., Chua, C.K., Leong, K.F. et al. Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J Mater Sci: Mater Med 19, 2541–2550 (2008). https://doi.org/10.1007/s10856-007-3203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3203-6

Keywords

Navigation