Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling

  • H. S. Ramanath
  • C. K. Chua
  • K. F. Leong
  • K. D. Shah


Fused deposition modelling (FDM) is an extrusion based Rapid prototyping (RP) technique which can be used to fabricate tissue engineering scaffolds. The present work focuses on the study of the melt flow behaviour (MFB) of Poly-ε-caprolactone (PCL) as a representative biomaterial, on the FDM. The MFB significantly affects the quality of the scaffold which depends not only on the pressure gradient, its velocity, and the temperature gradients but also physical properties like the melt temperature and rheology. The MFB is studied using two methods: mathematical modelling and finite element analysis (FEA) using Ansys®. The MFB is studied using accurate channel geometry by varying filament velocity at the entry and by varying nozzle diameters and angles at the exit. The comparative results of both mathematical modelling and FEA suggest that the pressure drop and the velocities of the melt flow depend on the flow channel parameters. One inference of particular interest is the temperature gradient of the PCL melt, which shows that it liquefies within 35% of the channel length. These results are invaluable to better understand the MFB of biomaterials that affects the quality of the scaffold built via FDM and can also be used to predict the MFB of other biomaterials.


Pressure Drop Finite Element Analysis Acrylonitrile Butadiene Styrene Nozzle Diameter Fuse Deposition Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. F. YANG, K. F. LEONG, Z. DU and C. K. CHUA, Tiss. Eng. 7(6) (2001) 679CrossRefGoogle Scholar
  2. 2.
    S. F. YANG, K. F. LEONG, Z. DU and C. K. CHUA, Tiss. Eng. 8(1) (2002) 1CrossRefGoogle Scholar
  3. 3.
    W. Y. YEONG, C. K. CHUA, K. F. LEONG and M. CHANDRASEKARAN, Trend Biotechnol. 22(12) (2004) 643CrossRefGoogle Scholar
  4. 4.
    C. K. CHUA, K. F. LEONG and C. S. LIM, Rapid Prototyping, Principles and Applications, 2nd edn. (World Scientific Publishing Co.Pte Ltd, Singapore, 2003)Google Scholar
  5. 5.
    K. F. LEONG, C. M. CHEAH and C. K. CHUA, Biomaterials 24(13) (2003) 2363CrossRefGoogle Scholar
  6. 6.
    M. H. TOO, K. F. LEONG, C. K. CHUA, Z. DU, S. F. YANG, S. L. HO and C. M. CHEAH, Int. J. Adv. Manufact. Technol. 19(3) (2002) 217Google Scholar
  7. 7.
    K. C. ANG, K. F. LEONG, C. K. CHUA and M. CHANDRASEKARAN, Rapid Prototyping J. 12(2) (2006) 100CrossRefGoogle Scholar
  8. 8.
    H. S. RAMANATH, M. CHANDRASEKARAN, C. K. CHUA, K. F. LEONG and K. D. SHAH, Key Eng. Mater. 334-335 (2007) 1241Google Scholar
  9. 9.
    K. C. ANG, K. F. LEONG, C. K. CHUA and M. CHANDRASEKARAN, J. Biomed. Mater. Res.: Part A. 80A(3) (2007) 655CrossRefGoogle Scholar
  10. 10.
    I. ZEIN, D. W. HUTMACHER, K. C. TAN and S. H. TEOH, Biomaterials 23 (2002) 1169CrossRefGoogle Scholar
  11. 11.
    F. WANG, L. SHOR, A. DARLING, S. KHALIL, W. SUN, S. GUÈCËERI and A. LAU, Rapid Prototyping J. 10/1 (2001) 42Google Scholar
  12. 12.
    A. L. DARLING and W. SUN, J. Biomed. Mater. Res. Part B: Appl. Biomater. 70B (2004) 311CrossRefGoogle Scholar
  13. 13.
    S. KHALIL, J. NAM and W. SUN, Rapid Prototyping J. 11(1) (2005) 9CrossRefGoogle Scholar
  14. 14.
    G. CIARDELLI, V. CHIONO, C. CRISTALLINI, N. BARBANI, A. AHLUWALIA, G. VOZZI, A. PREVITI, G. TANTUSSI and P. GIUSTI, J. Mater. Sci.: Mater. Med. 15 (2004)305CrossRefGoogle Scholar
  15. 15.
    R. C. THOMSON, M. J. YASZEMSKI, J. M. POWERS, and A. G. MIKOS, J. Biomater. Sci.: Polym. Ed. 7(1) (1995) 23CrossRefGoogle Scholar
  16. 16.
    Y. IKADA and H. TSUJI, Macromol. Rapid Commun. 21 (2000) 117CrossRefGoogle Scholar
  17. 17.
    FDM 3000 system documentation Startasys Inc., USA (2001)Google Scholar
  18. 18.
    A. BELLINI, Fused deposition of ceramics: A comprehensive experimental, analytical and computational study of material behaviour, fabrication process and equipment design. PhD thesis, (Drexel University, USA, 2002)Google Scholar
  19. 19.
    K. Y. JIANG and Y. H. GU, Key Eng. Mater. 259–260 (2004) 667CrossRefGoogle Scholar
  20. 20.
    M. P. GROSVENOR and J. N. STANIFORTH, Int. J. Pharmaceut. 135 (1996) 103CrossRefGoogle Scholar
  21. 21.
    Z. PINGPING, Y. HAIYANG and W. SHIQIANG, Eur. Polym. J. 34(1) (1998) 91CrossRefGoogle Scholar
  22. 22.
    W. MICHAELI, Extrusion Dies: Design and Engineering Computations. (Hanser Publications, Munich, 1984) pp. 10Google Scholar
  23. 23.
    C. RAUWENDAAL, Polymer Extrusion, 3rd edn. (SPE 1994) pp. 182Google Scholar
  24. 24.
    ANSYS element reference manual, Ansys Inc., USA (2004)Google Scholar
  25. 25.
    Asm Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials Section: Volume 2. (ASM International, USA, 1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • H. S. Ramanath
    • 1
  • C. K. Chua
    • 2
  • K. F. Leong
    • 2
  • K. D. Shah
    • 3
  1. 1.Singapore Institute of Manufacturing TechnologySingaporeSingapore
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.School of Mechanical and Building SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations