Biomimetic deposition of hydroxyapatite on a synthetic polypeptide with β sheet structure in a solution mimicking body fluid

  • Akari Takeuchi
  • Chikara Ohtsuki
  • Masanobu Kamitakahara
  • Shin-ichi Ogata
  • Toshiki Miyazaki
  • Masao Tanihara


Deposition of a hydroxyapatite layer with similar structure to bone mineral is an attractive approach to the fabrication of bioactive coating layers to achieve direct bonding to living bone. To get successful coating of a hydroxyapatite layer on an organic polymer using a biomimetic solution, it is essential to find organic substrates that can effectively induce heterogeneous nucleation of hydroxyapatite after exposure to the body environment. Our previous study showed that sericin, a type of silk protein, has the ability to induce hydroxyapatite nucleation in a biomimetic solution when the sericin has a β sheet structure. To confirm the effectiveness of the β sheet structure in hydroxyapatite nucleation, we focused on investigating hydroxyapatite deposition on a synthetic polypeptide with a β sheet structure in a biomimetic solution. The β sheet forming polypeptides with and without carboxyl groups, poly(FE)3FG, poly(FQ)3FG, poly(LE)3LG and poly(LQ)3LG, were synthesized in this study. All the polypeptides had mainly β sheet structure. After soaking the polypeptide films in 1.5SBF, which has 1.5 times the inorganic ion concentrations of human blood plasma, hydroxyapatite formed on the surfaces of the polypeptides with carboxyl groups, poly(FE)3FG and poly(LE)3LG, within 2 days, but not on those without carboxyl groups, poly(FQ)3FG and poly(LQ)3LG. We confirmed that the β sheet structure was effective for hydroxyapatite nucleation even in the synthetic polypeptide. This finding is useful for the future design of organic polymers that can effectively induce nucleation of hydroxyapatite.


Hydroxyapatite Circular Dichroism Simulated Body Fluid Sheet Structure HFIP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a Sasagawa Scientific Research Grant from the Japan Science Society.


  1. 1.
    Y. ABE, T. KOKUBO and T. YAMAMURO, J. Mater. Sci. Mater. Med. 1 (1990) 233CrossRefGoogle Scholar
  2. 2.
    M. TANAHASHI, T. YAO, T. KOKUBO, M. MINODA, T. MIYAMOTO, T. NAKAMURA and T. YAMAMURO, J. Am. Ceram. Soc. 77 (1994) 2805CrossRefGoogle Scholar
  3. 3.
    M. TANAHASHI and T. MATSUDA, J. Biomed. Mater. Res. 34 (1997) 305CrossRefGoogle Scholar
  4. 4.
    T. KAWAI, C. OHTSUKI, M. KAMITAKAHARA, T. MIYAZAKI, M. TANIHARA, Y. SAKAGUCHI and S. KONAGAYA, Biomaterials 25 (2004) 4529CrossRefGoogle Scholar
  5. 5.
    T. MIYAZAKI, C OHTSUKI, Y. AKIOKA, M. TANIHARA, J. NAKAO, Y. SAKAGUCHI and S. KONAGAYA, J. Mater. Sci. Mater. Med. 14 (2003) 569CrossRefGoogle Scholar
  6. 6.
    K. HOSOYA, C. OHTSUKI, T. KAWAI, M. KAMITAKAHARA, S. OGATA, T. MIYAZAKI and M. TANIHARA, J. Biomed. Mater. Res. 71A (2004) 596CrossRefGoogle Scholar
  7. 7.
    H. M. KIM, M. UENOYAMA, T. KOKUBO, M. MINODA, T. MIYAMOTO and T. NAKAMURA, Biomaterials 22 (2001) 2489CrossRefGoogle Scholar
  8. 8.
    M. KAWASHITA, M. NAKAO, M. MINODA, H. M. KIM, T. BEPPU, T. MIYAMOTO, T. KOKUBO and T. NAKAMURA, Biomaterials 24 (2003) 2477CrossRefGoogle Scholar
  9. 9.
    T. KOKUBO, M. HANAKAWA, M. KAWASHITA, M. MINODA, T. BEPPU, T. MIYAMOTO and T. NAKAMURA, J. Mater. Sci. Mater. Med. 15 (2004) 1007CrossRefGoogle Scholar
  10. 10.
    T. KOKUBO, M. HANAKAWA, M. KAWASHITA, M. MINODA, T. BEPPU, T. MIYAMOTO and T. NAKAMURA, Biomaterials 25 (2004) 4485CrossRefGoogle Scholar
  11. 11.
    Q. Q. HOANG, F. SICHERT, A. J. HAWARD and D. S. C. YANG, Nature 425 (2003) 977CrossRefGoogle Scholar
  12. 12.
    G. HE, T. DAHL, A. VEIS and A. EORGE, Nature Materials 2 (2003) 552CrossRefGoogle Scholar
  13. 13.
    L. ADDADI and S. WEINNER, Proc. Natl. Acad. Sci. U. S. A. 82 (1985) 4110CrossRefGoogle Scholar
  14. 14.
    A. TAKEUCHI, C. OHTSUKI, T. MIYAZAKI, H. TANAKA, M. YAMAZAKI and M. TANIHARA, J. Biomed. Mater. Res. 65A (2003) 283CrossRefGoogle Scholar
  15. 15.
    A. TAKEUCHI, C. OHTSUKI, T. MIYAZAKI, M. KAMITAKAHARA, S. OGATA, M. YAMAZAKI, Y. FURUTANI, H. KINOSHITA and M. TANIHARA, J. R. Soc. Interface 2 (2005) 373CrossRefGoogle Scholar
  16. 16.
    H. XIONG, B. L. BUCKWALTER, H. M. SHIEH and M. H. HECHT, Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 6349CrossRefGoogle Scholar
  17. 17.
    M. LEVITT, Biochemistry 17 (1978) 4277CrossRefGoogle Scholar
  18. 18.
    S. BRAHMS and J. BRAHMS, J. Mol. Biol. 138 (1980) 148CrossRefGoogle Scholar
  19. 19.
    V. MADISON and J. SCHELLMAN, Biopolymers 11 (1972) 1041CrossRefGoogle Scholar
  20. 20.
    N. GREENFIELD and G. D. FASMAN, Biochemistry 8 (1969) 4108CrossRefGoogle Scholar
  21. 21.
    R. TOWNEND, T. F. KUMOSINKI, S. N. TIMASHEFF, G. D. FASMAN and B. DAVIDSON, Biochem. Biophys. Res. Comm. 23 (1966) 163CrossRefGoogle Scholar
  22. 22.
    T. MIYAZAWA and E. R. BLOUT, J. Am. Chem. Soc. 83 (1961) 712CrossRefGoogle Scholar
  23. 23.
    C. OHTSUKI, T. KOKUBO, K. TAKATSUKA and T. TAMAMURO, J. Ceram. Soc. Japan (Seramikkusu Ronbunshi) 99 (1991) 1Google Scholar
  24. 24.
    C. OHTSUKI, H. KUSHITANI, T. KOKUBO, S. KOTANI and T. YAMAMURO, J. Biomed. Mater. Res. 25 (1991) 1363CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Akari Takeuchi
    • 1
  • Chikara Ohtsuki
    • 2
  • Masanobu Kamitakahara
    • 1
  • Shin-ichi Ogata
    • 1
  • Toshiki Miyazaki
    • 3
  • Masao Tanihara
    • 1
  1. 1.Graduate School of Materials Science, Nara Institute of Science and TechnologyIkomaJapan
  2. 2.Graduate School of EngineeringNagoya UniversityNaogya Japan
  3. 3.Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology KitasyushuJapan

Personalised recommendations