Skip to main content
Log in

The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In vivo, endothelial cells are constantly exposed to pulsatile shear and tensile stresses. The main aim of this study was to design and build a physiological simulator, which reproduced homogenous strain profiles of the tensile strain experienced in vivo, and to investigate the effect of this cyclic tensile strain on the cell morphology, cell orientation and protein expression of endothelial cells. The biological response of human umbilical vein endothelial cells to a uniaxial cyclic stretch, in this newly developed simulator, was examined experimentally using immunohistostaining and confocal imaging and it was found that the cells elongated and oriented at 58.9° ± 4.5°. This value was compared to a mathematical model where it was revealed that endothelial cells would orient at an angle of 60°. This model also revealed that endothelial cells have an axial strain threshold value of 1.8% when exposed to a 10% cyclic strain at 1 Hz for 3 h. Cells cultured under conditions of cyclic strain showed increased ICAM-1 immunostaining when compared to static cells whereas, a marked decrease in the levels of VCAM-1 receptor staining was also observed. Haemodynamic stresses can modulate the endothelial cell adhesion response in vivo thus, taken together; this data validates the bioreactor as replicating the physiological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. E. SUMPIO, J. Vasc. Surg. 13 (1991) 744

    CAS  Google Scholar 

  2. S. Z. ZHAO, B. ARIFF, Q. LONG, A. D. HUGHES, S. A. THOM, A. V. STANTON and X. Y. XU, J. Biomech. 35 (2002) 1367

    Article  CAS  Google Scholar 

  3. M. J. THUBRIKAR and F. ROBICSEK, Ann. Thorac. Surg. 59 (1995) 1594

    Article  CAS  Google Scholar 

  4. J. N. TOPPER and M. A. GIMBRONE, Jr., Mol. Med. Today 5 (1999) 40

    Article  CAS  Google Scholar 

  5. T. BACHETTI and L. MORBIDELLI, Pharmacol. Res. 42 (2000) 9

    Article  CAS  Google Scholar 

  6. C. STENSON-COX, V. BARRON, B. P. MURPHY, P. E. MCHUGH and T. SMITH, Curr. Genomics. 5 (2004) 287

    Article  Google Scholar 

  7. B. P. CHEN, Y. S. LI, Y. ZHAO, K. D. CHEN, S. LI, J. LAO, S. YUAN, J. Y. SHYY and S. CHIEN, Physiol. Genomics 7 (2001) 55

    Article  CAS  Google Scholar 

  8. P. F. DAVIES, Physiol. Rev. 75 (1995) 519

    CAS  Google Scholar 

  9. P. F. DAVIES, K. A. BARBEE, M. V. VOLIN, A. ROBOTEWSKYJ, J. CHEN, L. JOSEPH, M. L. GRIEM, M. N. WERNICK, E. JACOBS, D. C. POLACEK, N. DEPAOLA and A. I. BARAKAT, Annu. Rev. Physiol. 59 (1997) 527

    Article  CAS  Google Scholar 

  10. S. LEHOUX and A. TEDGUI, J. Biomech. 36 (2003) 631

    Article  Google Scholar 

  11. X. LI and Y. FAN, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20 (2003) 555

    Google Scholar 

  12. N. RESNICK, H. YAHAV, A. SHAY-SALIT, M. SHUSHY, S. SCHUBERT, L. C. ZILBERMAN and E. WOFOVITZ, Prog. Biophys. Mol. Biol. 81 (2003) 177

    Article  Google Scholar 

  13. H. WANG, W. IP, R. BOISSY and E. S. GROOD, J. Biomech. 28 (1995) 1543

    Article  CAS  Google Scholar 

  14. J. K. YUN, J. M. ANDERSON and N. P. ZIATS, J. Biomed. Mater. Res. 44 (1999) 87

    Article  CAS  Google Scholar 

  15. B. L. RISER, S. LADSON-WOFFORD, A. SHARBA, P. CORTES, K. DRAKE, C. J. GUERIN, J. YEE, M. E. CHOI, P. R. SEGARINI and R. G. NARINS, Kidney Int. 56 (1999) 428

    Article  CAS  Google Scholar 

  16. J. J. CHENG, B. S. WUNG, Y. J. CHAO and D. L. WANG, Hypertension 28 (1996) 386

    CAS  Google Scholar 

  17. T. TAKEMASA, T. YAMAGUCHI, Y. YAMAMOTO, K. SUGIMOTO and K. YAMASHITA, Eur. J. Cell Biol. 77 (1998) 91

    CAS  Google Scholar 

  18. J. H. WANG, P. GOLDSCHMIDT-CLERMONT, J. WILLE and F. C. YIN, J. Biomech. 34 (2001) 1563

    Article  CAS  Google Scholar 

  19. J. H. WANG and E. S. GROOD, Connect. Tissue Res. 41 (2000) 29

    CAS  Google Scholar 

  20. M. MORETTI, A. PRINA-MELLO, A. J. REID, V. BARRON and P. J. PRENDERGAST, J. Mater. Sci. Mater. Med. 15 (2004) 1159

    Article  CAS  Google Scholar 

  21. R. C. Buck, Exp. Cell Res. 127 (1980) 470

    Article  CAS  Google Scholar 

  22. C. NEIDLINGER-WILKE, E. S. GROOD, J.-C. WANG, R. A. BRAND and L. CLAES, J. Orthop. Res. 19 (2001) 286

    Article  CAS  Google Scholar 

  23. X. M. LIU, D. ENSENAT, H. WANG, A. I. SCHAFER and W. DURANTE, Febs. Lett. 541 (2003) 52

    Article  CAS  Google Scholar 

  24. J. A. GILBERT, P. S. WEINHOLD, A. J. BANES, G. W. LINK and G. L. JONES, J. Biomech. 27 (1994) 1169

    Article  CAS  Google Scholar 

  25. H. YAMADA, T. TAKEMASA and T. YAMAGUCHI, J. Biomech. 33 (2000) 1501

    Article  CAS  Google Scholar 

  26. K. NARUSE, T. YAMADA and M. SOKABE, Am. J. Physiol. 274 (1998) H1532

    CAS  Google Scholar 

  27. S. C. COWIN, J. Biomech. 32 (1999) 217

    Article  CAS  Google Scholar 

  28. M. B. DANCU, D. E. BERARDI, J. P. VANDEN HEUVEL and J. M. TARBELL, Arterioscler. Thromb. Vasc. Biol. 24 (2004) 2088

    Article  CAS  Google Scholar 

  29. W. CARVER, M. L. NAGPAL, M. NACHTIGAL, T. K. BORG and L. TERRACIO, Circ. Res. 69 (1991) 116

    CAS  Google Scholar 

  30. D. Y. LEUNG, S. GLAGOV and M. B. MATHEWS, Science 191 (1976) 475

    Article  CAS  Google Scholar 

  31. P. I. LELKES, C. S. KETTLUN, J. WIGBOLDUS and G. M. RUBANYI Signalling mechanisms involved in endothelial cell activation by perturbed flow. INABIS Symposium, (1998)

  32. E. A. SPRAGUE, S. MOHAN, L. BALLOU and R. M. NEREM Pathways mediating low shear stress-induced vascular endothelial gene activation INABIS Symposium (1998)

  33. M. YOSHIGI, E. B. CLARK and H. J. YOST, Cytometry 55A (2003) 109

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Programme for Research in Third Level Institutions (PRTLI), administered by the Higher Education Authority (HEA), Science Foundation Ireland and the Embark Initiative, operated by the Irish Research Council for Science, Engineering and Technology (IRCSET). The authors would like to acknowledge the help and support of Dr Bruce P. Murphy, Dr Margaret O’Brien, Dr. Michael Ball, Dr Eadaoin Timmins, Mr William Brennan and Mr. Ken Pascal, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Barron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barron, V., Brougham, C., Coghlan, K. et al. The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells. J Mater Sci: Mater Med 18, 1973–1981 (2007). https://doi.org/10.1007/s10856-007-3125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3125-3

Keywords

Navigation