The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells

  • Valerie Barron
  • Claire Brougham
  • Karen Coghlan
  • Emily McLucas
  • Denis O’Mahoney
  • Catherine Stenson-Cox
  • Peter E. McHugh


In vivo, endothelial cells are constantly exposed to pulsatile shear and tensile stresses. The main aim of this study was to design and build a physiological simulator, which reproduced homogenous strain profiles of the tensile strain experienced in vivo, and to investigate the effect of this cyclic tensile strain on the cell morphology, cell orientation and protein expression of endothelial cells. The biological response of human umbilical vein endothelial cells to a uniaxial cyclic stretch, in this newly developed simulator, was examined experimentally using immunohistostaining and confocal imaging and it was found that the cells elongated and oriented at 58.9° ± 4.5°. This value was compared to a mathematical model where it was revealed that endothelial cells would orient at an angle of 60°. This model also revealed that endothelial cells have an axial strain threshold value of 1.8% when exposed to a 10% cyclic strain at 1 Hz for 3 h. Cells cultured under conditions of cyclic strain showed increased ICAM-1 immunostaining when compared to static cells whereas, a marked decrease in the levels of VCAM-1 receptor staining was also observed. Haemodynamic stresses can modulate the endothelial cell adhesion response in vivo thus, taken together; this data validates the bioreactor as replicating the physiological environment.


Axial Strain Circumferential Strain Radial Strain Cyclic Stretch Cell Orientation 



This work was supported by the Programme for Research in Third Level Institutions (PRTLI), administered by the Higher Education Authority (HEA), Science Foundation Ireland and the Embark Initiative, operated by the Irish Research Council for Science, Engineering and Technology (IRCSET). The authors would like to acknowledge the help and support of Dr Bruce P. Murphy, Dr Margaret O’Brien, Dr. Michael Ball, Dr Eadaoin Timmins, Mr William Brennan and Mr. Ken Pascal, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.


  1. 1.
    B. E. SUMPIO, J. Vasc. Surg. 13 (1991) 744Google Scholar
  2. 2.
    S. Z. ZHAO, B. ARIFF, Q. LONG, A. D. HUGHES, S. A. THOM, A. V. STANTON and X. Y. XU, J. Biomech. 35 (2002) 1367CrossRefGoogle Scholar
  3. 3.
    M. J. THUBRIKAR and F. ROBICSEK, Ann. Thorac. Surg. 59 (1995) 1594CrossRefGoogle Scholar
  4. 4.
    J. N. TOPPER and M. A. GIMBRONE, Jr., Mol. Med. Today 5 (1999) 40CrossRefGoogle Scholar
  5. 5.
    T. BACHETTI and L. MORBIDELLI, Pharmacol. Res. 42 (2000) 9CrossRefGoogle Scholar
  6. 6.
    C. STENSON-COX, V. BARRON, B. P. MURPHY, P. E. MCHUGH and T. SMITH, Curr. Genomics. 5 (2004) 287CrossRefGoogle Scholar
  7. 7.
    B. P. CHEN, Y. S. LI, Y. ZHAO, K. D. CHEN, S. LI, J. LAO, S. YUAN, J. Y. SHYY and S. CHIEN, Physiol. Genomics 7 (2001) 55CrossRefGoogle Scholar
  8. 8.
    P. F. DAVIES, Physiol. Rev. 75 (1995) 519Google Scholar
  9. 9.
    P. F. DAVIES, K. A. BARBEE, M. V. VOLIN, A. ROBOTEWSKYJ, J. CHEN, L. JOSEPH, M. L. GRIEM, M. N. WERNICK, E. JACOBS, D. C. POLACEK, N. DEPAOLA and A. I. BARAKAT, Annu. Rev. Physiol. 59 (1997) 527CrossRefGoogle Scholar
  10. 10.
    S. LEHOUX and A. TEDGUI, J. Biomech. 36 (2003) 631CrossRefGoogle Scholar
  11. 11.
    X. LI and Y. FAN, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20 (2003) 555Google Scholar
  12. 12.
    N. RESNICK, H. YAHAV, A. SHAY-SALIT, M. SHUSHY, S. SCHUBERT, L. C. ZILBERMAN and E. WOFOVITZ, Prog. Biophys. Mol. Biol. 81 (2003) 177CrossRefGoogle Scholar
  13. 13.
    H. WANG, W. IP, R. BOISSY and E. S. GROOD, J. Biomech. 28 (1995) 1543CrossRefGoogle Scholar
  14. 14.
    J. K. YUN, J. M. ANDERSON and N. P. ZIATS, J. Biomed. Mater. Res. 44 (1999) 87CrossRefGoogle Scholar
  15. 15.
    B. L. RISER, S. LADSON-WOFFORD, A. SHARBA, P. CORTES, K. DRAKE, C. J. GUERIN, J. YEE, M. E. CHOI, P. R. SEGARINI and R. G. NARINS, Kidney Int. 56 (1999) 428CrossRefGoogle Scholar
  16. 16.
    J. J. CHENG, B. S. WUNG, Y. J. CHAO and D. L. WANG, Hypertension 28 (1996) 386Google Scholar
  17. 17.
    T. TAKEMASA, T. YAMAGUCHI, Y. YAMAMOTO, K. SUGIMOTO and K. YAMASHITA, Eur. J. Cell Biol. 77 (1998) 91Google Scholar
  18. 18.
    J. H. WANG, P. GOLDSCHMIDT-CLERMONT, J. WILLE and F. C. YIN, J. Biomech. 34 (2001) 1563CrossRefGoogle Scholar
  19. 19.
    J. H. WANG and E. S. GROOD, Connect. Tissue Res. 41 (2000) 29Google Scholar
  20. 20.
    M. MORETTI, A. PRINA-MELLO, A. J. REID, V. BARRON and P. J. PRENDERGAST, J. Mater. Sci. Mater. Med. 15 (2004) 1159CrossRefGoogle Scholar
  21. 21.
    R. C. Buck, Exp. Cell Res. 127 (1980) 470CrossRefGoogle Scholar
  22. 22.
    C. NEIDLINGER-WILKE, E. S. GROOD, J.-C. WANG, R. A. BRAND and L. CLAES, J. Orthop. Res. 19 (2001) 286CrossRefGoogle Scholar
  23. 23.
    X. M. LIU, D. ENSENAT, H. WANG, A. I. SCHAFER and W. DURANTE, Febs. Lett. 541 (2003) 52CrossRefGoogle Scholar
  24. 24.
    J. A. GILBERT, P. S. WEINHOLD, A. J. BANES, G. W. LINK and G. L. JONES, J. Biomech. 27 (1994) 1169CrossRefGoogle Scholar
  25. 25.
    H. YAMADA, T. TAKEMASA and T. YAMAGUCHI, J. Biomech. 33 (2000) 1501CrossRefGoogle Scholar
  26. 26.
    K. NARUSE, T. YAMADA and M. SOKABE, Am. J. Physiol. 274 (1998) H1532Google Scholar
  27. 27.
    S. C. COWIN, J. Biomech. 32 (1999) 217CrossRefGoogle Scholar
  28. 28.
    M. B. DANCU, D. E. BERARDI, J. P. VANDEN HEUVEL and J. M. TARBELL, Arterioscler. Thromb. Vasc. Biol. 24 (2004) 2088CrossRefGoogle Scholar
  29. 29.
    W. CARVER, M. L. NAGPAL, M. NACHTIGAL, T. K. BORG and L. TERRACIO, Circ. Res. 69 (1991) 116Google Scholar
  30. 30.
    D. Y. LEUNG, S. GLAGOV and M. B. MATHEWS, Science 191 (1976) 475CrossRefGoogle Scholar
  31. 31.
    P. I. LELKES, C. S. KETTLUN, J. WIGBOLDUS and G. M. RUBANYI Signalling mechanisms involved in endothelial cell activation by perturbed flow. INABIS Symposium, (1998)Google Scholar
  32. 32.
    E. A. SPRAGUE, S. MOHAN, L. BALLOU and R. M. NEREM Pathways mediating low shear stress-induced vascular endothelial gene activation INABIS Symposium (1998)Google Scholar
  33. 33.
    M. YOSHIGI, E. B. CLARK and H. J. YOST, Cytometry 55A (2003) 109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Valerie Barron
    • 1
  • Claire Brougham
    • 1
    • 2
  • Karen Coghlan
    • 1
    • 2
  • Emily McLucas
    • 1
  • Denis O’Mahoney
    • 1
  • Catherine Stenson-Cox
    • 1
  • Peter E. McHugh
    • 1
    • 2
  1. 1.National Centre for Biomedical Engineering ScienceNational University of Ireland, GalwayGalwayIreland
  2. 2.Department of Biomedical and Mechanical EngineeringNational University of Ireland, GalwayGalwayIreland

Personalised recommendations