Journal of Materials Science: Materials in Medicine

, Volume 18, Issue 12, pp 2269–2273 | Cite as

Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings

  • H. Maeda
  • V. Maquet
  • T. Kasuga
  • Q. Z. Chen
  • J. A. Roether
  • A. R. Boccaccini


Hydroxycarbonate apatite (HCA) coatings on the surface of bioresorbable materials for bone tissue engineering scaffolds were produced using macroporous poly(DL-lactide) (PDLLA) foams impregnated by calcium carbonate in vaterite crystalline form. Stable and homogeneous vaterite deposition on PDLLA foams was achieved using a slurry dipping technique. In vitro studies in simulated body fluid (SBF) were performed to induce formation of (HCA) on the surface of vaterite/PDLLA composite foams. HCA was detected after immersion of foams in SBF for 7 days. Hence, depositing vaterite on materials followed by immersion in SBF is confirmed to induce HCA coatings on the surface of the material. The HCA coated, bioactive and resorbable PDLLA foams are intended for use as bone tissue engineering scaffolds.


Foam Simulated Body Fluid Bone Tissue Engineering Vaterite Simulated Body Fluid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to Dr. Yoshio Ota of Yabashi Industries, Co., Ltd. for helpful discussions. The present work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science and by a grant from the NITECH 21st Century COE Program “World Ceramics Center for Environmental Harmony”.


  1. 1.
    K. H. LEE and C. C. CHU, J. Biomed. Mater. Res. 49 (2000) 25CrossRefGoogle Scholar
  2. 2.
    G. CHEN, T. USHIDA and T. TATEISHI, Adv. Mater. 12 (2000) 455CrossRefGoogle Scholar
  3. 3.
    C. V. RAGEL and M. VALLET-REGÍ, J. Biomed. Mater. Res. 51 (2000) 424CrossRefGoogle Scholar
  4. 4.
    L. G. GRIFFITH, Acta mater. 48 (2000) 263CrossRefGoogle Scholar
  5. 5.
    C. M. AGRAWAL and R. B. RAY, J. Biomed. Mater. Res. 55 (2001) 141CrossRefGoogle Scholar
  6. 6.
    J. YAO, S. RADINR, P. S. LEBOY and P. DUCHEYNE, Biomater. 26 (2005) 1935CrossRefGoogle Scholar
  7. 7.
    O. BRETCANU, E. VERNÉ, L. BORELLO and A. R. BOCCACCINI, J. Mater. Sci: Mater. Med. 15 (2004) 893CrossRefGoogle Scholar
  8. 8.
    A. G. STAMBOULIS, A. R. BOCCACCINI and L. L. HENCH, Adv. Eng. Mater. 4 (2002) 105CrossRefGoogle Scholar
  9. 9.
    H. R. RAMAY and M. ZHANG, Biomater. 24 (2003) 3293CrossRefGoogle Scholar
  10. 10.
    R. ZHANG and P. X. MA, J. Biomed. Mater. Res. 45 (1999) 285CrossRefGoogle Scholar
  11. 11.
    A. R. BOCCACCINI, A. G. STAMBOULIS, A. RASHID and J. A. ROETHER, J. Biomed. Mater. Res. Part B: Appl. Biomater. 67B (2003) 618CrossRefGoogle Scholar
  12. 12.
    J. RICH, T. JAAKKOLA, T. TIRRI, T. NÄRHI, A. YLI-Urpo and J. SEPPÄLÄ, Biomater. 23 (2002) 2143CrossRefGoogle Scholar
  13. 13.
    T. KOKUBO, Acta Mater. 46 (1998) 2519CrossRefGoogle Scholar
  14. 14.
    Y. DOI, T. SHIBUTANI, Y. MORIWAKI and Y. IWAYAMA, J. Biomed. Mater. Res. 39 (1998) 603CrossRefGoogle Scholar
  15. 15.
    H. M. KIM, K. KISHIMOTO, F. MIYAJI, T. KOKUBO, T. YAO, Y. SUETSUGU, J. TANAKA and T. NAKAMURA, J. Biomed. Mater. Res. 46 (1999) 228CrossRefGoogle Scholar
  16. 16.
    A. OYANE, M. KAWASHITA, K. NAKANISHI, T. KOKUBO, M. MINODA, T. MIYAMOTO and T. NAKAMURA, Biomater. 24 (2003) 1729CrossRefGoogle Scholar
  17. 17.
    H. LIAO, H. MUTVEI, M. SJÖSTRÖM, L. HAMMARSTRÖM and J. LI, Biomater. 21 (2000) 457CrossRefGoogle Scholar
  18. 18.
    R. VAGO, D. PLOTQUIN, A. BUNIN, I. SINELNIKOV, D. ATAR and D. ITZHAKI, J. Biochem. Biophys. Methods. 50 (2002) 253CrossRefGoogle Scholar
  19. 19.
    J. E. BRADY, General Chemistry Principles and Structure, 5th ed., New York: John Wiley and Sons (1975)Google Scholar
  20. 20.
    H. MAEDA, T. KASUGA, M. NOGAMI and Y. OTA, J. Ceram. Soc. Jpn. 112 (2004) S804Google Scholar
  21. 21.
    J. J. BLAKER, J. E. GOUGH, V. MAQUET, I. NOTINGHER and A. R. BOCCACCINI, J. Biomed. Mater. Res. Part A. 67A (2003) 1401CrossRefGoogle Scholar
  22. 22.
    V. MAQUET, A. R. BOCCACCINI, L. PRAVATA, I. NOTINGHER and R. JÉRÔME, J. Biomed. Mater. Res. 66A (2003) 335CrossRefGoogle Scholar
  23. 23.
    C. H. SCHUGENS, V. MAQUET, C. H. GRANDFILS, R. JÉRÔME and P. H. TEYSSIE, J. Biomed. Mater. Res. 30 (1996) 449CrossRefGoogle Scholar
  24. 24.
    A. G. MIKOS, M. D. LYMAN, L. E. FREED and R. LANGER, Biomater. 15 (1994) 55CrossRefGoogle Scholar
  25. 25.
    J. A. ROETHER, A. R. BOCCACCINI, L. L. HENCH, V. MAQUET, S. GAUTIER and R. JÉRÔME, Biomater. 23 (2002) 3871CrossRefGoogle Scholar
  26. 26.
    T. YASUE, Y. KOJIMA and Y. ARAI, Gym. Lime 247 (1993) 471 (in Japanese)Google Scholar
  27. 27.
    K. ZHANG, Y. WANG, M. A. HILLMYER and L. F. FRANCIS, Biomater. 25 (2004) 2489CrossRefGoogle Scholar
  28. 28.
    I. D. XYNOS, A. J. EDGAR, L. D. K. BUTTERY, L. L. HENCH and J. M. POLAK, Biochem. Biophys. Res. Commun. 276 (2000) 461CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • H. Maeda
    • 1
  • V. Maquet
    • 2
  • T. Kasuga
    • 1
  • Q. Z. Chen
    • 3
  • J. A. Roether
    • 3
  • A. R. Boccaccini
    • 3
  1. 1.Department of Materials Science and EngineeringGraduate School of Engineering, Nagoya Institute of TechnologyShowa-ku, NagoyaJapan
  2. 2.Centre for Education and Research on Macromolecules (CERM), Interfaculty Centre for BiomaterialsUniversity of LigeLigeBelgium
  3. 3.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations