Advertisement

Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications

  • E. A. Abou Neel
  • J. C. Knowles
Article

Abstract

This study investigated doping titanium dioxide (TiO2) into phosphate glasses, 50 P2O5–30 CaO–20 Na2O, to control their degradation rate and enhance their biological response to be suitable scaffolds for bone tissue engineering applications. The thermal and structural properties were analysed using differential thermal analysis and X-ray powder diffraction. The effect of TiO2 incorporation on degradation rate, ion release, and pH changes was also carried out. In vitro cyto-biocompatibility was assessed through MG63 human osteosarcoma cells attachment and viability using scanning electron microscopy and confocal microscopy, respectively. The results showed that addition of TiO2 produced a significant increase in density and glass transition temperature. X-ray diffraction analysis showed the presence of NaCa(PO3)3 as a main phase of these glasses with titanium phosphate Ti–P2O7 only detected for 5 mol% TiO2 glasses. The degradation rate, however, was significantly reduced by one order of magnitude with incorporation of 5 mol% TiO2 which has been reflected in released ions (cations and anions) and the minimal pH changes. Moreover, addition of TiO2, 3 and 5 mol% in particular, supported the MG63 cells attachment and maintained high cell viability up to 7 days culture comparable to Thermanox®. These results suggested that TiO2 containing phosphate glasses can be a promising substrate for bone tissue engineering applications.

Keywords

TiO2 MG63 Cell Glass Composition Phosphate Glass Glass Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors would like to acknowledge the EPSRC for providing the funding to conduct this study.

References

  1. 1.
    J. J. MARLER, J. UPTON, R. LANGER and J. P. VACANTI, Adv. Drug Deliv. Rev. 33(1–2) (1998) 165CrossRefGoogle Scholar
  2. 2.
    F. R. A. J. ROSE and R. O. C. OREFFO, Biochem. Biophys. Res. Commun. 292(1) (2002) 1CrossRefGoogle Scholar
  3. 3.
    K.-J. WALGENBACH, M. VOIGT, A. W. RIABIKHIN, C. ANDREE, D. J. SCHAEFER and G. B. STARK, Anatom. Rec. 263(4) (2001) 372CrossRefGoogle Scholar
  4. 4.
    D. C. CLUPPER, J. E. GOUGH, P. M. EMBANGA, I. NOTINGHER and L. L. HENCH, J. Mater. Sci. Mater. Med. 15 (2004) 803CrossRefGoogle Scholar
  5. 5.
    J. E. GOUGH, I. NOTTINGHER and L. L. HENCH, J. Biomed. Mater. Res. 66A (2004) 640CrossRefGoogle Scholar
  6. 6.
    R. M. DAY and A. R. BOCCACCINI, J. Biomed. Mater. Res. 73A(1) (2005) 73CrossRefGoogle Scholar
  7. 7.
    M. CERUUTI, D. GREENSPAN and K. POWERS, Biomaterials 26 (2005) 1665CrossRefGoogle Scholar
  8. 8.
    J. C. KNOWLES, J. Mater. Chem. 32 (2003) 395Google Scholar
  9. 9.
    I. AHMED, C. A. COLLINS, M. LEWIS, I. OLSEN and J. C. KNOWLES, Biomaterials 25 (2004) 3223CrossRefGoogle Scholar
  10. 10.
    E. A. ABOU NEEL, I. AHMED, J. PRATTEN, S. N. NAZHAT and J. C. KNOWLES, Biomaterials 26 (2005) 2247CrossRefGoogle Scholar
  11. 11.
    E. A. ABOU NEEl, I. AHMED, J. J. BLAKER, A. BISMARCK, A. R. BOCCACCINI, M. P. LEWIS, S. N. NAZHAT and J. C. KNOWLES, Acta Biomater. 1 (2005) 553CrossRefGoogle Scholar
  12. 12.
    J. E. GOUGH, P. CHRISTIAN, C. A. SCOTCHFORD and I. A. JONES, J. Biomed. Mater. Res. 66A (2003) 233CrossRefGoogle Scholar
  13. 13.
    M. BITAR, V. SALIH, V. MUDERA, J. C. KNOWLES and M. LEWIS, Biomaterials 25 (2004) 2283CrossRefGoogle Scholar
  14. 14.
    V. SALIH, K. FRANKS, M. JAMES, G. W. HASTINGS and J. C. KNOWLES, J. Mater. Sci. Mater. Med. 11 (2000) 615CrossRefGoogle Scholar
  15. 15.
    N. MORTIZ, E. VEDEL, H. YLANEN, M. JOKINEN and M. HUPA, J. Mater. Sci. Mater. Med. 15 (2004) 787CrossRefGoogle Scholar
  16. 16.
    P. K. BROW, D. R. TALLANT, W. L. WARREN, A. MCINTYRE and D. E. DAY, Phys. Chem. Glasses 38(6) (1997) 300Google Scholar
  17. 17.
    V. RAJENDRAN, A. V. GAYATHRI DEVI, M. AZOOZ and F. H. EL-BATAL, J, Non-Cryst. Solids 353(1) (2006) 77CrossRefGoogle Scholar
  18. 18.
    T. KASUGA and Y. ABE, J. Non-Cryst. Solids 243 (1999) 70CrossRefGoogle Scholar
  19. 19.
    J. R. V. WAZER and K. A. HOLST, J. Am. Ceram. Soc. 72 (1950) 639Google Scholar
  20. 20.
    J. J. BLAKER, J. E. GOUGH, V. MAQUET, I. NOTINGHER and A. R. BOCCACCINI, J. Biomed. Mater. Res. 67A (2003) 1401CrossRefGoogle Scholar
  21. 21.
    L.-L. TSENG, C.-J. HUANG, S.-S. HSU, J.-S. CHEN, H.-H. CHENG, H.-T. CHANGE, B.-P. JIANN and C.-R. JAN, Clin. Exp. Pharmacol. Physiol. 31 (2004) 732CrossRefGoogle Scholar
  22. 22.
    S. J. LEE, J. S. CHOI, K. S. PARK, G. KHANG, Y. M. LEE and H. B. LEE, Biomaterials 25, (2004) 4699CrossRefGoogle Scholar
  23. 23.
    M. NAVARRO, S. D. VALLE, S. MARTINEZ, S. ZEPPETELLI, L. AMBROSIO, J. A. PLANELL and M. P. GINEBRA, Biomaterials 25, (2004) 4233CrossRefGoogle Scholar
  24. 24.
    M. NAVARRO, S. D. VALLE, S. MARTINEZ, S. ZEPPETELLI, L. AMBROSIO, J. A. PLANELL and M. P. GINEBRA, Biomaterials 25, (2004) 4233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of Biomaterials and Tissue Engineering, Eastman Dental InstituteUniversity College LondonLondonUK

Personalised recommendations