Journal of Materials Science: Materials in Medicine

, Volume 18, Issue 9, pp 1771–1779 | Cite as

Influence of polyelectrolyte on the thermosensitive property of PNIPAAm-based copolymer hydrogels

  • Xian-Zheng Zhang
  • Chih-Chang Chu


A new family of poly(NIPAAm-co-2-acrylamido-2-methyl-1-propanesulfonic acid) [P(NIPAAm-co-AMPSA)] hydrogels was synthesized by incorporating negative charged AMPSA to the backbone of the PNIPAAm-based hydrogel. The effect of polyelectrolyte (i.e., PAMPSA) on the thermosensitive property of PNIPAAm hydrogels was investigated. It was found that P(NIPAAm-co-AMPSA) hydrogels exhibited unique honey-comb-like 3D porous structure having rigid cell wall as well as enhanced mechanical property. The incorporation of AMPSA into PNIPAAm backbones also led to a significant increase in swelling capability at room temperature when comparing to pure PNIPAAm hydrogels. In addition, the shrinking rate upon heating was significantly improved if the AMPSA content in P(NIPAAm-co-AMPSA) hydrogels was less than 10 wt%.


Lower Critical Solution Temperature PNIPAAm Feed Ratio Hydrogel Sample Copolymer Hydrogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. N. PARK, W. S. W. SHALABY and H. S. PARK, 1975 Biodegradable hydrogels for drug delivery (Technomic Publication AG. Lancaster, PA) pp. 1–9, chapter 1Google Scholar
  2. 2.
    N. A. PEPPAS and A. G. MIKOS, Preparation methods and structure of hydrogels. Hydrogels in Medicine and Pharmacy, edited by N.A. Peppas, Vol.1. CRC Press, Boca Raton, FL, 1986, 1–27Google Scholar
  3. 3.
    A. SILBERBERG, Network deformation in Flow. Molecular basis of polymer. Networks, edited by A. Baumgartner and C.E. Picot, Berlin: Spring-Verlag, 1989, 147–151Google Scholar
  4. 4.
    B. D. RATNER and A. S. HOFFMAN, Synthetic hydrogels for biomedical applications. Hydrogels for Medical and Related Applications, edited by J.D. Andradre, ACS Symposium Series, American Chemical Society, Washington. D.C., 1976, 31, 1–36Google Scholar
  5. 5.
    G. CHEN and A. S. HOFFMAN, Nature 373 (1995) 49CrossRefGoogle Scholar
  6. 6.
    A. M. MIKA, R. F. CHILDS, J. M. DICKSON, B. E. MCCARRY and D. R. GAGNON, J. Membr. Sci. 108 (1995) 37CrossRefGoogle Scholar
  7. 7.
    Y. HIROSE, G. GIANNETTI, J. MARGUARDT and T. TANAKA, J. Phys. Soc. Jpn. 61 (1992) 4085CrossRefGoogle Scholar
  8. 8.
    J. P. GANG, J. KAWAKAMI, V. G. SERGEYEV and Y. OSADA, Macromolecules 24 (1991) 5246CrossRefGoogle Scholar
  9. 9.
    T. MIYATA, N. ASAMI and T. URAGAMI, Nature 399 (1999) 766CrossRefGoogle Scholar
  10. 10.
    Y. HIROKAWA and T. TANAKA, J. Chem. Phys. 81 (1984) 6379CrossRefGoogle Scholar
  11. 11.
    H. FEIL, Y. H. BAE, J. FEIJEN and S. W. KIM, Macromolecules 26 (1993) 2496CrossRefGoogle Scholar
  12. 12.
    H.G. SCHILD, Prog. Polym. Sci. 17 (1992) 163CrossRefGoogle Scholar
  13. 13.
    Y. H. BAE, T. OKANO and S. W. KIM, J. Polym. Sci. Part B Polym. Phys. 28 (1990) 923CrossRefGoogle Scholar
  14. 14.
    N. A. PEPPAS and R. LANGER, Science 263 (1994) 1715CrossRefGoogle Scholar
  15. 15.
    P. S. STAYTON, T. SHIMOBJI, C. LONG, A. CHILKOTI, G. CHEN, J. M. HARRIS and A. S. HOFFMAN, Nature 378 (1995) 472CrossRefGoogle Scholar
  16. 16.
    J. KOST and R. LANGER, Adv. Drug Deliver. Rev. 6 (2001) 125CrossRefGoogle Scholar
  17. 17.
    T. SHIROYA, N. TAMURA, M. YASUI and K. FUJIMOTO, Colloid Surf. B 4 (1995) 267CrossRefGoogle Scholar
  18. 18.
    I. Y. GALAVE, M. N. GUPTA and B. MATTIASSON, Chemtech. 26 (1996) 19Google Scholar
  19. 19.
    H. FEIL, Y. H. BAE, J. FEIGEN and S. W. KIM, J. Membr. Sci. 64 (1991) 283CrossRefGoogle Scholar
  20. 20.
    F. ROSSO, A. BARBARISI, M. BARBARISI, O. PETILLO, S. MARGARUCCI, A. CALARCO and G. PELUSO, Mater. Sci. Engi. C 23 (2003) 371CrossRefGoogle Scholar
  21. 21.
    J. K. ANDRADE, S. NAGAOKA, S. COOPER, T. OKANO and S. W. KIM, Trans. – Am. Soc. Artif. Intern. Organs 83 (1987) 75Google Scholar
  22. 22.
    B. D. RATNER, A. B. JOHNSTON and T. J. LENK, J. Biomed. Mater. Res. Appl. Biomater. 21 (1987) 59CrossRefGoogle Scholar
  23. 23.
    S. W. Kim and J. Feijens, CRC Critical Reviews in Biocompatibility, edited by D. Williams, Vol. 1(3). CRC Press, Boca Raton, FL. 1985, 229–241Google Scholar
  24. 24.
    Y. OSADA, H. OKUZAKI and H. HORI, Nature 355 (1992) 242CrossRefGoogle Scholar
  25. 25.
    H. OKUZAKI and Y. OSADA, Electrochim. Acta. 40 (1995) 2229CrossRefGoogle Scholar
  26. 26.
    Y. UEOKA, J. P. GONG and Y. OSADA, J. Intelligent Mat. Syst. Str. 8 (1997) 465CrossRefGoogle Scholar
  27. 27.
    X. Z. ZHANG, D. Q. WU and C. C. CHU, Biomaterials 25 (2004) 3793CrossRefGoogle Scholar
  28. 28.
    X. Z. ZHANG, D. Q. WU and C. C. CHU, Biomaterials 25 (2004) 4719CrossRefGoogle Scholar
  29. 29.
    H. TANAKA, H. TOUHARA, K. NAKANISHI, N. WATANABE, J. Chem. Phys. 80 (1984) 5170CrossRefGoogle Scholar
  30. 30.
    K. OTAKE, H. INOMATA, M. KONNO, S. SAITO, Macromolecules 23 (1990) 283CrossRefGoogle Scholar
  31. 31.
    S. NAMKUNG, C. C. CHU, J. Biomater. Sci. (In Press)Google Scholar
  32. 32.
    O. E. PHILIPPOVA, R. RULKENS, B. I. KOVTUNENKO, S. S. ABRAMCHUK, A. R. KHOKHLOV and G. WEGNER, Macromolecules 31 (1998) 1168CrossRefGoogle Scholar
  33. 33.
    X. S. WU, A. S. HOFFMAN and P. YAGER, J. Polym. Sci., Part A Polym. Chem. 30 (1992) 2121CrossRefGoogle Scholar
  34. 34.
    X. Z. ZHANG, Y. Y. YANG, T. S. CHUNG and K. X. MA, Langmuir 17 (2001) 6094CrossRefGoogle Scholar
  35. 35.
    R. X. ZHUO and W. LI, J. Polym. Sci. A Polym. Chem. 41 (2003) 152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhanP.R. China
  2. 2.Department of Textiles and Apparel & Biomedical Engineering ProgramCornell UniversityIthacaUSA

Personalised recommendations