Journal of Materials Science: Materials in Medicine

, Volume 18, Issue 9, pp 1825–1829 | Cite as

Preparation of porous hydroxyapatite with interconnected pore architecture



Since pore connectivity has significant effects on the biological behaviors of biomedical porous hydroxyapatite (PHA), the preparation of PHA with interconnected pore architecture is of great practical significance. In the present study, PHA with highly interconnected architecture was prepared via a simple burnout route with rod-like urea as the porogen. Microscopy and porosimetry data showed that the as-prepared PHA had open and interconnected pore structure with the average fenestration size of about 120 μm. Open pores occupied up to 98% of the total porosity. The compressive strength and modulus of the as-prepared PHA were respectively 1.3–7.6 MPa and 4.0–10.4 GPa.


Compressive Strength Mercury Porosimetry Tissue Engineering Scaffold Calcium Acetate Urea Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the financial support from the National Natural Science Foundation of China (No. 20221603) and Chinese Academy of Sciences.


  1. 1.
    T. M. G. CHU, D. G. ORTON, S. J. HOLLISTER, S. E. FEINBERG and J. W. HALLORAN, Biomaterials 23 (2002) 1283CrossRefGoogle Scholar
  2. 2.
    B. S. CHANG, C. K. LEE, K. S. HONG, H. J. YOUN, H. S. RYU, S. S. CHUNG, K. and W. PARK, Biomaterials 21 (2000) 1291CrossRefGoogle Scholar
  3. 3.
    K. A. HING, S. M. BEST and W. BONFIELD, J. Mater. Sci: Mater. Med. 10 (1999) 135CrossRefGoogle Scholar
  4. 4.
    H. W. KIM, S. Y. LEE and C. J. BAE, Biomaterials 24 (2003) 3277CrossRefGoogle Scholar
  5. 5.
    A. TAMPIERI, G. CELOTTI, S. SPRIO, A. DELCOGLIANO and S. FRANZESE, Biomaterials 22 (2001) 1365CrossRefGoogle Scholar
  6. 6.
    S. H. LI, J. R. WIJIN, P. LAYROLLE and K. DE GROOT, J. Am. Ceram. Soc. 86 (2003) 65CrossRefGoogle Scholar
  7. 7.
    D. M. LIU, J. Mater. Sci: Mater. Med. 8 (1997) 227CrossRefGoogle Scholar
  8. 8.
    D. M. LIU, J. Mater. Sci. Lett. 15 (1996) 419Google Scholar
  9. 9.
    N. Ö. ENGIN and A. C. TAS, J. Am. Ceram. Soc. 83 (2000) 1581. CrossRefGoogle Scholar
  10. 10.
    A. ŚLÓSARCZYK, E. STOBIERSKA and Z. PASZKIEWICZ, J. Mater. Sci. Lett. 18 (1999) 1163CrossRefGoogle Scholar
  11. 11.
    P. SEPULVEDA, F. S. ORTEGA, M. D. M. INNOCENTINI and V. C. PANDOLFELLI, J. Am. Ceram. Soc. 83 (2000) 3021CrossRefGoogle Scholar
  12. 12.
    H. R. RAMAY and M. Q. ZHANG, Biomaterials 24 (2003) 3293CrossRefGoogle Scholar
  13. 13.
    J. M. TABOAS, R. D. MADDOX, P. H. KREBSBACH and S. J. HOLLISTER, Biomaterials 24 (2003) 181CrossRefGoogle Scholar
  14. 14.
    D. TADIC, F. BECKMANN, K. SCHWARZ and M. EPPLE, Biomaterials 25 (2004) 3335CrossRefGoogle Scholar
  15. 15.
    T. M. G. CHU, J. W. HALLORAN, S. J. HOLLISTER and S. E. FEINBERG, J. Mater. Sci.: Mater. Med. 12 (2001) 471CrossRefGoogle Scholar
  16. 16.
    R. B. MARTIN, M. W. CHAPMAN, N. A. SHARKEY, S. L. ZISSIMOS, B. BAY and E. C. SHORS, Biomaterials 14 (1993) 341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Multiphase Reaction Laboratory, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations