Skip to main content
Log in

Experimental investigation and theoretical modelling of the nonlinear acoustical behaviour of a liver tissue and comparison with a tissue mimicking hydrogel

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Native harmonics generated by nonlinear distortion of ultrasound during propagation in a medium may cause misinterpretations in spectral analysis when studying contrast agents. The aim of this paper is to quantitatively evaluate nonlinear propagation effects of diagnostic ultrasound pulses in biological tissues and to assess whether a cellulose-based hydrogel can be a suitable material for tissue mimicking purposes. Hydrogel and pig liver tissue samples of various thicknesses were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values (range 0.06–0.60). Second harmonic and first harmonic amplitudes were extracted from spectra of received signals and their ratio was then used to compare hydrogel and liver behaviours. Resulting trends are very similar for sample thicknesses up to 8 cm and highlight a significant increase in nonlinearity for MI > 0.3, for both liver and hydrogel. A numerical procedure was also employed to calculate pressure distribution along the beam axis: these theoretical results showed a very good agreement with experimental data in the low pressure range, though failed in predicting the MI threshold. In conclusion, the hydrogel resulted to be a suitable material for manufacturing tissue mimicking phantoms, in particular to study contrast agent behaviour with a “low power approach”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. L. STRAUSS and K. D. BELLER, Ultrasound Med. Biol. 23 (1997) 975

    Article  CAS  Google Scholar 

  2. G. SEIDEL and M. KAPS, Stroke 28 (1997) 1610

    CAS  Google Scholar 

  3. L. J. BOS, The Application of Contrast Echocardiography for the Assessment of Myocardial Perfusion (Amsterdam: University of Amsterdam, 1997)

  4. C. FRISCHKE, J. R. LINDNER, K. WEI, N. C. GOODMAN, D. M. SKYBA and S. KAUL, Circulation 96 (1997) 959

    Google Scholar 

  5. R. LEISCHIK, J. ROSE, G. CASPARI, A. SKYSCHALLY, G. HEUSCH and R. ERBEL, Herz 22 (1997) 40

    Article  CAS  Google Scholar 

  6. P. HAUFF, T. FRITZSCH, M. REINHARDT, W. WEITSCHIES, F. LUDERS, V. UHLENDORF and D. HELDMANN, Invest. Radiol. 32 (1997) 94

    Article  CAS  Google Scholar 

  7. Y. KONO, F. MORIYASU, Y. MINE, T. NADA, N. KAMIYAMA, Y. SUGINOSHITA, T. MATSUMURA, K. KOBAYASHI and T. CHIBA, Invest. Radiol. 32 (1997) 120

    Article  CAS  Google Scholar 

  8. H. MADJAR and J. JELLINS, Eur. J. Ultrasound 5 (1997) 65

    Article  Google Scholar 

  9. F. A. DUCK, Ultrasound Med. Biol. 28 (2002) 1

    Article  Google Scholar 

  10. M. BENNET, S. MCLAUGHLIN, T. ANDERSON and N. MCDICKEN, Ultrasound Med. Biol. 31 (2005) 1051

    Article  Google Scholar 

  11. M. J. MONAGHAN, J. M. METCALFE, S. ODUNLAMI, A. WAALER and D. E. JEWITT, Eur. Heart J. 14 (1993) 1200

    CAS  Google Scholar 

  12. B. WILSON, K. K. SHUNG, B. HETE, H. LEVENE and J. L. BARNHART, Ultrasound Med. Biol. 19 (1993) 181

    Article  CAS  Google Scholar 

  13. A. BOUAKAZ, S. FRIGSTAD, F. J. TEN CATE and N. DE JONG, Ultrasound Med. Biol. 28 (2002) 59

    Article  Google Scholar 

  14. P. N. BURNS, Clin. Radiol. 51 (1996) 50

    Google Scholar 

  15. P. H. CHANG, K. K. SHUNG, S. WU and H. B. LEVENE, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 (1995) 1020

    Article  Google Scholar 

  16. B. SCHROPE, V. L. NEWHOUSE and V. UHLENDORF, Ultrason. Imaging 14 (1992) 134

    Article  CAS  Google Scholar 

  17. N. DE JONG, Acoustic Properties of Ultrasound Contrast Agents (Rotterdam: Erasmus University, 1993)

  18. X. A. A. M. VERBEEK, J. M. WILLIGERS, P. J. BRANDS, L. A. F. LEDOUX and A. P. G. HOEKS, Ann. Biomed. Eng. 27 (1999) 670

    Article  CAS  Google Scholar 

  19. M. BRUCE, M. AVERKIOU, K. TIEMAN, S. LOHMAIER, J. POWERS and K. BEACH, Ultrasound Med. Biol. 30 (2004) 735

    Article  Google Scholar 

  20. P. D. KRISHNA and V. L. NEWHOUSE, Ultrasound Med. Biol. 23 (1997) 453

    Article  CAS  Google Scholar 

  21. J. E. POWERS, P. N. BURNS and J. SOUQUET, Advances in Echo Imaging using Contrast Enhancement (Dordrecht: Kluwer Academic, 1997), p. 139

  22. W. ZHENG and V. L. NEWHOUSE, Ultrasound Med. Biol. 24 (1998) 513

    Article  CAS  Google Scholar 

  23. L. FILIPCZYNSKI, J. WOJCIK, T. KUJAWSKA, G. LYPACEWICZ, R. TYMKIEWICZ and B. ZIENKIEWICZ, Ultrasound Med. Biol. 27 (2001) 251

    Article  CAS  Google Scholar 

  24. A. SANNINO, A. ESPOSITO, L. NICOLAIS, M. A. DEL NOBILE, A. GIOVANE, C. BALESTRIERI, R. ESPOSITO and M. AGRESTI, J. Mater. Sci. Med. 11 (2000) 247

    Article  CAS  Google Scholar 

  25. M. BAZZOCCHI, Ecografia, 2nd edn. (Idelson Gnocchi, 2001)

  26. S. CASCIARO, C. DEMITRI, R. PALMIZIO ERRICO, F. CONVERSANO, G. PALMA, E. CASCIARO and A. DISTANTE, In Proceedings of the IEEE International Ultrasonics Symposium, Rotterdam, September 2005, edited by M. Passini Yuhas (Aurora, IL: Industrial Measurement System, 2005), p. 1668

    Chapter  Google Scholar 

  27. S. I. AANONSEN, T. BARKVE, J. N. TJOTTA and S. TJOTTA, J. Acoust. Soc. Am. 75 (1984) 749

    Article  Google Scholar 

  28. P. T. CHRISTOPHER and K. J. PARKER, J. Acoust. Soc. Am. 73 (1991) 1525

    Google Scholar 

  29. P. K. VERMA, V. F. HUMPHREY and F. A. DUCK, Ultrasound Med. Biol. 31 (2005) 1723

    Article  Google Scholar 

  30. F. A. DUCK, Physical Properties of Tissue (London: Academic Press, 1990)

  31. J. WU and J. TONG, Ultrasound Med. Biol. 24 (1997) 153

    Article  Google Scholar 

  32. P. M. MORSE and K. U. INGARD, Theoretical Acoustics (New York: MacGraw-Hill, 1968)

Download references

Acknowledgements

The authors thank Prof. Alfonso Maffezzoli and Dr. Alessandro Sannino for providing useful suggestions and guidance in the hydrogel synthesis and preparation. This work was partially funded by the FIRB-US RBNE01E9ZR and CERSUM Laboratory Rif. Min. Decreto Direttoriale 1105/2002 N° 243 granted by the Italian Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Casciaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casciaro, S., Demitri, C., Conversano, F. et al. Experimental investigation and theoretical modelling of the nonlinear acoustical behaviour of a liver tissue and comparison with a tissue mimicking hydrogel. J Mater Sci: Mater Med 19, 899–906 (2008). https://doi.org/10.1007/s10856-007-3007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3007-8

Keywords

Navigation