Advertisement

Cross-section transmission electron microscopy characterization of the near-surface structure of medical Nitinol superelastic tubing

  • Pavel L. Potapov
  • Wim Tirry
  • Dominique Schryvers
  • Valerie G. M. Sivel
  • Meng-Yue Wu
  • Dimitri Aslanidis
  • Henny Zandbergen
Article

Abstract

The application of Nitinol in a wide variety of medical implants is progressively increasing because of its unique mechanical properties, durability and biocompatibility. However, as Nitinol consists of about 50 at.% of toxic Ni, certain applications are still hindered by the concern of free Ni release in the surrounding tissue. The latter is controlled by the structure of near-surface layers and can be strongly affected by various surface treatments. A proper application of advanced cross-section sample preparation techniques allows us to characterize the Nitinol near-surface structure down to the nanoscale by means of transmission electron microscopy (TEM). Elemental maps of the Ti, O and Ni distribution, concentration profiles, quantification of composition as well as atomic resolution images at the surface of a Nitinol tubing are presented and the results obtained with different sample preparation and analytical characterization techniques are compared. In addition to a strong decrease of Ni towards the surface of the oxide layer and a Ti depleted layer underneath the oxide, also a possible transformation from TiO to TiO2 is documented.

Keywords

Oxide Layer High Resolution Transmission Electron Microscopy Transmission Electron Microscopy Method Ionization Edge Nitinol Tubing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. OSHIDA and S. MIYAZAKI, Corrosion Eng. 40 (1991) 1009–1025.Google Scholar
  2. 2.
    S. A. SHABALOVSKAYA, Bio-Med. Mater. Eng. 6 (1996) 267–289.Google Scholar
  3. 3.
    J. RYHÁNEN, “Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy,” Ph.D. Thesis (Oulu University, Oulu, 1999) p. 3–52.Google Scholar
  4. 4.
    S. A. SHABALOVSKAYA, Int. Mat. Rev. 46 (2001) 1–17.CrossRefGoogle Scholar
  5. 5.
    R. VENUGOPALAN and C. THERANIER, in S. M. RUSSEL and A. R. PELTON (Eds), Proc. Int. Conf. Shape Memory and Superelastic Tech. Monterey (2000), p. 261–270.Google Scholar
  6. 6.
    C. THERANIER, R. VENUGOPALAN and A. R. PELTON, in “Shape memory implants” L. H. YAHIA (Ed), (Springer, Berlin, 2000), p. 35–45.Google Scholar
  7. 7.
    G. S. FIRSTOV, R. G. VITCHEV, H. KUMAR, B. BLANPAIN and J. VAN HUMBEECK, Biomaterials 23 (2002) 4863–4871.CrossRefGoogle Scholar
  8. 8.
    L. ZHU, J. M. FINO and A. R. PELTON, in T. W. DUERIG, and A. R. PELTON (Eds), Proc. Int. Conf. Shape Memory and Superelastic Tech., Monterey 2003.Google Scholar
  9. 9.
    C. L. CHU, S. K. WU and Y. C. YEN, Mat. Sci. Eng. A216 (1996) 193–200.Google Scholar
  10. 10.
    Y. OSHIDA, R. C. L. SACHDEVA and S. MIYAZAKI, Biomed. Mater. Eng. 2 (1992) 51–59.Google Scholar
  11. 11.
    S. A. SHABALOVSKAYA and J. W. ANDEREGG, J. Vac. Sci. Technol. A13 (1995) 2624–2632.Google Scholar
  12. 12.
    R. F. EGERTON, “Electron Energy-Loss Spectroscopy in the Electron Microscope” (Plenum Press, New York and London, 1996)Google Scholar
  13. 13.
    B. BRYDSON, H. SAUER and W. ENGELS, in M. M. DISKO, C. C. AHN and B. FULTZ, (Eds), “Transmission Electron Energy Loss Spectroscopy in Materials Science,” (New Orlean, 1991), p. 131–154.Google Scholar
  14. 14.
    P. L. POTAPOV and D. SCHRYVERS, Ultramicroscopy 99 (2004) 73–85.CrossRefGoogle Scholar
  15. 15.
    S. E. KULKOVA, (2003) private communication.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Pavel L. Potapov
    • 1
  • Wim Tirry
    • 1
  • Dominique Schryvers
    • 1
  • Valerie G. M. Sivel
    • 2
  • Meng-Yue Wu
    • 2
  • Dimitri Aslanidis
    • 3
  • Henny Zandbergen
    • 2
  1. 1.EMAT, University of AntwerpAntwerpBelgium
  2. 2.National Centre for HRTEM, TU DelftDelftThe Netherlands
  3. 3.@ medical technologies N. V.Herk-de-StadBelgium

Personalised recommendations