Skip to main content

Advertisement

Log in

Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Three different porous scaffolds were tested. The first two were prepared by sintering bovine bone. The third scaffold was prepared using three-dimensional gel-lamination, a new rapid prototyping method, and was named as hydroxyapatite artificial bone.

X-ray diffraction and Fourier transform infrared spectroscopy analysis confirmed that the samples were mainly highly crystalline hydroxyapatite ceramics. Scanning electron microscopy and mercury intrusion porosimetry measurement showed that the pores were interconnected and pore sizes ranged from several microns to hundreds of microns.

Mouse osteoblast-like cells grown on the three scaffolds retained their characteristic morphology. Cell proliferation and differentiation, analyzed by methylthiazol tetrazolium (MTT) and alkaline phosphatase activity assays, were significantly higher on the hydroxyapatite artificial bone than on the other two scaffolds tested. All the scaffolds provided good attachment, proliferation and differentiation of bone cells.

These results indicate that the scaffolds have a favorable interaction with cells, they support cell growth and functions, and therefore these scaffolds may have great potential as bone substitutes. The three-dimensional gel-lamination method is proven to be an attractive process to design and fabricate bone scaffolds with favorable properties, and therefore, has promising potential for bone repair applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. KOEMPEL and B. S. PATT J. Biomed. Mater. Res. 41 (1998) 359.

    Article  CAS  Google Scholar 

  2. M. JARCHO, Clin. Orthop. Rel. Res. 157 (1981) 259.

    CAS  Google Scholar 

  3. H. YAMASAKI, Jpn. J. Oral. Biol. 32 (1990) 190.

    CAS  Google Scholar 

  4. U. RIPAMONTI, J. Bone. Joint. Surg. Am. 73 (1991) 692.

    CAS  Google Scholar 

  5. X. D. ZHANG, In “Bioceramics and the human body” (Amsterdam, Elsevier, 1991) p. 408.

    Google Scholar 

  6. H. YUAN and Y. LI Biomed. Eng. Appl. Basis. Com. 9 (1997) 274.

    Google Scholar 

  7. M. OKUMURA and H. OHGUSHI J. Biomed. Mater. Res. 37 (1997) 122.

    Article  CAS  Google Scholar 

  8. C. ZHANG and J. X. WANG J. Biomed. Mater. Res. 55 (2001) 28.

    Article  CAS  Google Scholar 

  9. M. E. NORMAN and H. M. ELGENDY Clin. Mater. 17 (1994) 85.

    Article  CAS  Google Scholar 

  10. P. SEPULVEDA, Am. Ceram. Soc. Bull. 76 (1997) 61.

    CAS  Google Scholar 

  11. J. SAGGIO-WOYANSKY and C. E. SCOTT Am. Ceram. Soc. Bull. 71 (1992) 1674.

    CAS  Google Scholar 

  12. S. JOSCHEK and B. NIES Biomaterials. 21 (2000) 1645.

    Article  CAS  Google Scholar 

  13. M. SIVAKUMAR and T. S. SAMPATH KUMAR Biomaterials. 17 (1996) 1709.

    Article  CAS  Google Scholar 

  14. S. GUIZZARDI and M. RASPANTI Biomaterials. 16 (1995) 931.

    Article  CAS  Google Scholar 

  15. X. Y. WANG and J. M. TIAN Key. Engineering. Materials. 224-2 (2002) 437.

    Article  Google Scholar 

  16. H. SUDO and H. A. KODAMA J. Cell. Biol. 96 (1983) 191.

    Article  CAS  Google Scholar 

  17. J. Y. CHOI and B. H. LEE J. Cell. Biochem. 61 (1996) 609.

    Article  CAS  Google Scholar 

  18. A. G. MIKOS and M. D. LYMAN Biomaterials. 15 (1994) 55.

    Article  CAS  Google Scholar 

  19. Y. DENG and K. ZHAO Biomaterials. 23 (2002) 4049.

    Article  CAS  Google Scholar 

  20. F. CHEN and Z. C. WANG Mater. Lett. 57 (2002) 858.

    Article  CAS  Google Scholar 

  21. R. N. PANDA and M. F. HSIEH J. Phys. Chem. Solids. 64 (2003) 193.

    Article  CAS  Google Scholar 

  22. L. M. RODRÍGUEZ-LORENZO and J. M. F. FERREIRA Mater. Res. Bull. 39 (2004) 83.

    Article  CAS  Google Scholar 

  23. J. F. OSBORN, In “Implantatwerkstoff Hydroxylapatitkeramik” (Berlin, Quintessenz Verlags-GmbH, 1985) p. 17–8; 32–6; 39.

    Google Scholar 

  24. H. YAMASAKI and H. SAKAI Biomaterials. 13 (1992) 308.

    Article  CAS  Google Scholar 

  25. P. L. TRANQUILLI and A. MEROLLI J. Mater. Sci. Mater. Med. 5 (1994) 345.

    Article  CAS  Google Scholar 

  26. L. CHOU and B. MAREK Biomaterials. 20 (1999) 977.

    Article  CAS  Google Scholar 

  27. P. S. EGGLI and W. MULLER Clin. Orthop. Rel. Res. 232 (1988) 127.

    CAS  Google Scholar 

  28. R. E. HOLMES and V. MOONEY Clin. Orthop. Rel. Res. 188 (1984) 252.

    CAS  Google Scholar 

  29. W. J. DHERT and C. P. KLEIN J. Biomed. Mater. Res. 25 (1991) 1183.

    Article  CAS  Google Scholar 

  30. A. TACHIBANA and Y. FURUTA J. Biotechnol. 93 (2002) 165.

    Article  CAS  Google Scholar 

  31. E. WINTERMANTEL and J. MAYER Biomaterials. 17 (1996) 83.

    Article  CAS  Google Scholar 

  32. E. TSURUGA and H. TAKITA J. Biochem (Tokyo). 121 (1997) 317.

    CAS  Google Scholar 

  33. L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487.

    Article  CAS  Google Scholar 

  34. F. B. BAGAMBISA and U. JOOS J. Biomed. Mater. Res. 27 (1993) 1047.

    Article  CAS  Google Scholar 

  35. C. P. KLEIN and A. A. DRIESSEN J. Biomed. Mater. Res. 17 (1983) 769.

    Article  CAS  Google Scholar 

  36. P. SEPULVEDA and F. S. ORTEGA J. Am. Ceram. Soc. 83 (2000) 3021.

    Article  CAS  Google Scholar 

  37. L. J. GIBSON and M. F. ASHBY, In “Cellular solids: structure and properties. Cambridge solid state science series, 2 nd Ed” (Cambridge, UK, Cambridge University Press, 1997) p. 429.

    Google Scholar 

  38. W. C. VROUWENVELDER and C. G. GROOT Biomaterials. 13 (1992) 382.

    Article  CAS  Google Scholar 

  39. P. J. MARIE, Calcif. Tissue. Int. 56 Suppl 1 (1995) S13.

    CAS  Google Scholar 

  40. D. A. PULEO and L. A. HOLLERAN J. Biomed. Mater. Res. 25 (1991) 711.

    Article  CAS  Google Scholar 

  41. M. HOTT and B. NOEL J. Biomed. Mater. Res. 37 (1997) 508.

    Article  CAS  Google Scholar 

  42. H. ZREIQAT and P. EVANS J. Biomed. Mater. Res. 44 (1999) 389.

    Article  CAS  Google Scholar 

  43. D. D. DELIGIANNI and N. D. KATSALA Biomaterials. 22 (2001) 87.

    Article  CAS  Google Scholar 

  44. K. HATANO and H. INOUE Bone. 25 (1999) 439.

    Article  CAS  Google Scholar 

  45. J. Y. MARTIN and Z. SCHWARTZ J. Biomed. Mater. Res. 29 (1995) 389.

    Article  CAS  Google Scholar 

  46. J. C. DUBOIS and C. SOUCHIER Biomaterials. 20 (1999) 1841.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Fang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Cao, WL., Wang, XY. et al. Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone. J Mater Sci: Mater Med 17, 815–823 (2006). https://doi.org/10.1007/s10856-006-9840-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-9840-3

Keywords

Navigation