Carbonate release from carbonated hydroxyapatite in the wide temperature rage

  • S. M. Barinov
  • J. V. Rau
  • S. Nunziante Cesaro
  • J. Ďurišin
  • I. V. Fadeeva
  • D. Ferro
  • L. Medvecky
  • G. Trionfetti


Synthetic carbonated apatite ceramics are considered as promising alternative to auto- and allograft materials for bone substitute. The aim of this study was to investigate the thermal stability of an AB-type carbonated apatite in the wide temperature range. The data on the thermal stability have to allow the conditions of the sintering of the ceramics to be controlled. Initial carbonated apatite powders were prepared by interaction between calcium oxide and ammonium hydrogen phosphate with addition of ammonium carbonate. Decomposition process was monitored by infra red spectroscopy, weight loss and X-ray diffraction of solid, and by infra red analysis of condensed gas phase resulted from the thermal decomposition of the sample in equilibrium conditions. Features of carbon monoxide and carbon dioxide release were revealed. The synthesized AB-type carbonated apatite is started to decompose at about 400°C releasing mainly carbon dioxide, but retained some carbonate groups and apatite structure at the temperature 1100°C useful to prepare porous carbonate-apatite ceramics intended for bone tissue engineering scaffolds.


Initial Powder Calcium Oxide Ammonium Carbonate Carbonate Apatite Carbonate Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. R. GIBSON and W. BONFIELD, J. Biomed. Mater. Res. 59 (1998) 697–708.CrossRefGoogle Scholar
  2. 2.
    H. AOKI, “Science and medical applications of hydroxyapatite” (JAAS, Tokyo, 1991).Google Scholar
  3. 3.
    I. MAYER and J. D. B. FEATHERSTONE, J. Cryst. Growth 219 (2000) 98–101.CrossRefGoogle Scholar
  4. 4.
    C. REY, V. RENUGOPALAKRISHNAN, B. COLLINS and M. GLIMCHER, Calcif. Tissue Int. 49 (1991) 251–258.Google Scholar
  5. 5.
    R. Z. LEGEROS, O.R. TRAUTZ, E. KLEIN and J. P. LEGEROS, Specialia Experimentia 25 (1969) 5–7.CrossRefGoogle Scholar
  6. 6.
    Y. DOI, Y. MORIWAKI, M. OKAZAKI, J. TOKAHASHI and K. JOSHIN, J. Dent. Res. 61 (1982) 429–434.Google Scholar
  7. 7.
    F.C.M. DRIESSENS, R.M.H. VERBEEK and H.J.M. HEIJIGERS, Inorg. Chem. Acta 80 (1983) 19–23.CrossRefGoogle Scholar
  8. 8.
    C. REY, B. COLLINS, T. GOEHL, I. R. DICKSON and M. J. GLIMCHER, Calcif. Tissue Int. 45 (1989) 157–164.Google Scholar
  9. 9.
    E. LANDI, G. CELOTTI, G. LOGROSCINO and A. TAMPIERI, J. Europ. Ceram. Soc. 23 (2003) 2931–2937.CrossRefGoogle Scholar
  10. 10.
    J. BARRALET, J.C. KNOWLES, S. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 13 (2002) 629– 533.CrossRefGoogle Scholar
  11. 11.
    T.I. IVANOVA, O.V. FRANK-KAMENETSKAYA, A.B. KOL’TSOV and V.L. UGOLKOV, J. Solid State Chem. 160 (2001) 340–349.CrossRefGoogle Scholar
  12. 12.
    J. E. BARRALET, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 11 (2000) 719–724.CrossRefGoogle Scholar
  13. 13.
    T. S. SAMPATH KUMAR, I. MANJUBALA and J. GUNASAKERAN, Biomaterials 21 (2000) 1623–1629.CrossRefGoogle Scholar
  14. 14.
    Russian Standard GOST 4530-76 “Calcium carbonate” (Standards, Moscow, 1976).Google Scholar
  15. 15.
    A. FELTRIN, M. GUIDO and S. NUNZIANTE CESARO, J. Phys. Chem. 97 (1992) 8986–8990.CrossRefGoogle Scholar
  16. 16.
    S. S. GORELIK, YU. A. SKAKOV, L. N. RASTORGUEV, “X-ray diffraction and electron-optical analysis” (Moscow Steel and Alloys Institute Publ., Moscow, 1994).Google Scholar
  17. 17.
    J.C. ELLIOTT, “Structure and Chemistry of the Apatites and Other Calcium Phosphates, (Elsevier, Amsterdam, 1994).Google Scholar
  18. 18.
    R. A. LIDIN, L. L. ANDREEVA and V. A. MOLOCHKO, “Handbook of Inorganic Chemistry” (Chimia, Moscow, 1987).Google Scholar
  19. 19.
    I. REHMAN and W. BONFIELD, J. Sci. Mater. Med. 8 (1997) 1–4.CrossRefGoogle Scholar
  20. 20.
    A. G. MAKI, J. Chem. Phys. 35 (1961) 931–935.CrossRefGoogle Scholar
  21. 21.
    H. VU, M. R. ATWOOD and B. VODAR, J. Chem. Phys. 38 (1963) 2671–2674.CrossRefGoogle Scholar
  22. 22.
    G. E. LEROY, G. EWING and G. C. PIMENTEL, J. Chem. Phys. 40 (1964) 2298–2303.CrossRefGoogle Scholar
  23. 23.
    J. B. DAVIES and H. E. HALLAM, J. Chem. Soc. Faraday II 68 (1972) 509–513.CrossRefGoogle Scholar
  24. 24.
    M. J. IRVINE, J. C. MATHIESON and D.E. PULLIN, Austral. J. of Chem. 35 (1982) 1971–1977.CrossRefGoogle Scholar
  25. 25.
    Nist-ivtanthermo. “Database of thermodynamic properties of individual substances. Developed in Thermocentre of the Russian Academy of Science” (CRC Press, New York, 1993).Google Scholar
  26. 26.
    Y. DOI, T. SHIBUTANI, Y. MORIWAKI, T. KAJIMOTO and Y. IWAYAMA, J. Biomed. Mater. Res. 39 (1998) 603–610.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • S. M. Barinov
    • 1
  • J. V. Rau
    • 2
    • 3
  • S. Nunziante Cesaro
    • 2
  • J. Ďurišin
    • 4
  • I. V. Fadeeva
    • 1
  • D. Ferro
    • 2
  • L. Medvecky
    • 4
  • G. Trionfetti
    • 5
  1. 1.Instutute for Physical Chemistry of CeramicsRussian Academy of SciencesMoscowRussia
  2. 2.CNR Istituto per lo Studio dei Materiali NonostrutturatiRomaItaly
  3. 3.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
  4. 4.Institute for Materials ResearchSlovak Academy of SciencesKošiceSlovakia
  5. 5.Universita’ di Roma “La Sapienza”RomaItaly

Personalised recommendations