Investigation of fibroblast and keratinocyte cell-scaffold interactions using a novel 3D cell culture system

  • T. Sun
  • D. Norton
  • A. J. Ryan
  • S. MacNeil
  • J. W. Haycock


In this study we investigated the influence of fibre diameter and interfibre space in 3D scaffolds on cellular behaviour of human dermal fibroblasts and a human keratinocyte cell line (HaCaT cell). Electrospun aligned poly L-lactic acid fibres (2–10 μ m) were bound to form fibres with a broad range of diameters (2–120 μ m) and then constructed in a specifically designed 3D cell culture system. Human dermal fibroblasts were introduced to one end of the free-standing fibres using a fibrin clot and encouraged to ‘walk the plank’. Under these conditions it was observed that a minimum fibre diameter of 10 μ m for fibroblast adhesion and migration arose. A thin layer of electrospun viscose rayon scaffold fibres (diameter 30–50 μ m, pore size 50–300 μ m) was also constructed in the 3D cell culture system. After introduction to the scaffold using cells contained within a fibrin clot, fibroblasts were observed to stratify and also elongate between fibres in order to occupy voids. An interfibre span of up to 200 μ m was possible by a single fibroblast, but more commonly void distances were spanned by cellular multilayering. In contrast, HaCaT keratinocytes cultured under identical conditions using viscose rayon scaffolds occupied very much smaller void distances of 50–80 μ m predominantly by stratification.


PLLA HaCaT Cell HaCaT Keratinocytes Viscose Rayon Fluorescent Micrographs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. HUBBELL, Curr. Opin. Biotechnol. 14 (2003) 551.CrossRefGoogle Scholar
  2. 2.
    X. ZONG, H. BIEN, C. Y. CHUNG, L. YIN, D. FANG, B. S. HSIAO, B. CHU and E. ENTCHEVA, Biomaterials 26 (2005) 5330.CrossRefGoogle Scholar
  3. 3.
    M. S. MOLLY and H. G. JULIAN, Science 310 (2005) 1135.CrossRefGoogle Scholar
  4. 4.
    G. L. BOWLIN, Materials Today 7 (2004) 64.CrossRefGoogle Scholar
  5. 5.
    X. H. ZONG, S. F. RAN, D. F. FANG, B. S. HSIAO and B. CHU, Polymer 44 (2003) 4959.CrossRefGoogle Scholar
  6. 6.
    Y. K. LUU, K. KIM, B. S. HSIAO, B. CHU and M. HADJIARGYROU, J. Contr. Rel. 89 (2003) 341.CrossRefGoogle Scholar
  7. 7.
    C. Y. XU, R. INAI, M. KOTAKI and S. RAMAKRISHNA, Biomaterials 25 (2004) 877.CrossRefGoogle Scholar
  8. 8.
    M. J. DALBY, M. O. RIEHLE, H. JOHNSTONE, S. AFFROSSMAN and A. S. G. CURTIS, Biomaterials 23 (2002) 2945.CrossRefGoogle Scholar
  9. 9.
    A. S. ANDERSSON, P. OLSSON, U. LIDBERG and D. SUTHERLAND, Exp. Cell Res. 288 (2003) 177.CrossRefGoogle Scholar
  10. 10.
    D. E. INGBER, Proc. Natl. Acad. Sci. 100 (2003) 1472.CrossRefGoogle Scholar
  11. 11.
    A. CURTIS and C. WILKINSON, Trends Biotechnol. 19 (2001) 97.CrossRefGoogle Scholar
  12. 12.
    B. WOJCIAK-STOTHARD, A. CURTIS, W. MONAGHAN, K. MACDONALD and C. WILKINSON, Exp. Cell Res. 223 (1996) 426.CrossRefGoogle Scholar
  13. 13.
    A. CURTIS and C. WILKINSON, Biomaterials 18 (1997) 1573.CrossRefGoogle Scholar
  14. 14.
    E. CUKIERMAN, R. PANKOV, D. R. STEVENS and K. M. YAMADA, Science 294 (2001) 1708.CrossRefGoogle Scholar
  15. 15.
    A. D. ROSKELLEY and M. J. BISSELL, J. Biochem. Cell Biol. 73 (1995) 391.CrossRefGoogle Scholar
  16. 16.
    T. SUN, S. M. MAI, J. W. HAYCOCK, A. J. RYAN and S. MACNEIL, Tissue Eng. 11 (2005) 1023.CrossRefGoogle Scholar
  17. 17.
    G. C. ENGELMAYR, G. D. PAPWORTH, S. C. WATKINS, J. E. MAYER and M. S. SACKS, J. Biomechanics 2006 (in press).Google Scholar
  18. 18.
    X. F. WALBOOMERS and J. A. JANSEN, Odontology 89 (2001) 2.CrossRefGoogle Scholar
  19. 19.
    V. F. SECHRIEST, Y. J. MIAO, C. NIYIBIZI, A. WESTERHAUSEN-LARSON, H. W. MATTHEW, C. H. EVANS, F. H. FU and J. K. SUH, J. Biomed. Mater. Res. 49 (2000) 534.CrossRefGoogle Scholar
  20. 20.
    A. CHEVALLAY, N. ABDUL-MALAK and D. HERBAGE, J. Biomed. Mater. Res. 49 (2000) 448.CrossRefGoogle Scholar
  21. 21.
    T. A. DESAI, Medical Eng. Phys. 22 (2000) 595.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • T. Sun
    • 1
  • D. Norton
    • 2
  • A. J. Ryan
    • 2
  • S. MacNeil
    • 1
  • J. W. Haycock
    • 1
  1. 1.Department of Engineering Materials, Kroto Research InstituteUniversity of SheffieldSheffieldUK
  2. 2.Department of ChemistryUniversity of SheffieldSheffieldUK

Personalised recommendations