Advertisement

Effects of fibronectin and laminin on structural, mechanical and transport properties of 3D collageneous network

  • D. Guarnieri
  • S. Battista
  • A. Borzacchiello
  • L. Mayol
  • E. De Rosa
  • D. R. Keene
  • L. Muscariello
  • A. Barbarisi
  • P. A. Netti
Article

Abstract

Recent studies, on cells cultured in 3D collagen gels, have shown that, beside from their well known biochemical role, fibronectin (FN) and laminin (LM) affect cell functions via a modification of mechanical and structural properties of matrix due to interaction with collagen molecules. Though biochemical properties of FN and LM have been widely studied, little is known about their role in collagen matrix assembly. The aim of this work was to characterize FN- and LM-based collagen semi-interpenetrating polymer networks (semi-IPNs), in order to understand how these biomacromolecular species can affect collagen network assembly and properties. Morphology, viscoelasticity and diffusivity of collagen gels and FN- and LM-based collagen semi-IPNs were analysed by Confocal Laser Scanning microscopy (CLSM), Environmental Scanning Electron microscopy (ESEM), Transmission Electron microscopy (TEM), Rheometry and Fluorescence Recovery After Photobleaching (FRAP) techniques. It was found that FN and LM were organized in aggregates, interspersed in collagen gel, and in thin fibrils, distributed along collagen fibres. In addition, high FN and LM concentrations affected collagen fibre assembly and structure and induced drastic effects on rheological and transport properties.

Keywords

Laminin Environmental Scanning Electron Microscopy Fluorescence Recovery After Photobleaching Fluorescence Recovery After Photobleaching Analysis Environmental Scanning Electron Microscopy Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. O. HYNES, Fibronectins, 1st edn. (Springer-Verlag, New York, 1990) p. 546.Google Scholar
  2. 2.
    D. F. MOSHER, “Fibronectin”. (Academic Press, San Diego, 1989) p. 474.Google Scholar
  3. 3.
    J. H. MINER and P. D. YURCHENCO, Ann. Rev. Cell Dev. Biol. 20 (2004) 255.CrossRefGoogle Scholar
  4. 4.
    S. BATTISTA, D. GUARNIERI, C. BORSELLI, S. ZEPPETELLI, A. BORZACCHIELLO, L. MAYOL, D. GERBASIO, D.R. KEENE, L. AMBROSIO and P. A. NETTI, Biomaterials 26(31) (2005) 6194.CrossRefGoogle Scholar
  5. 5.
    R. M. KUNTZ and W. M. SALTZMAN, Biophys. J. 72 (1997) 1472.Google Scholar
  6. 6.
    J. ENGEL and H. FURTHMAYR, Methods Enzymol. 145 (1987) 3.CrossRefGoogle Scholar
  7. 7.
    G. R. MARTIN and R. TIMPI, Ann. Rev. Cell Biol. 3 (1987) 57.Google Scholar
  8. 8.
    G. R. MARTIN, R. TIMPL and K. KUHN, Adv. Protein C/tern. 39 (1988) 1.Google Scholar
  9. 9.
    M. PAULSSON, Collagen Relat. Res. 7 (1987) 443.Google Scholar
  10. 10.
    R. TIMPL and M. DZIADEK, Rev. Exp. Pathol. 29 (1986) 1.Google Scholar
  11. 11.
    K. BECK, I.T. HUNTER and J. ENGEL, FASEB J. 4 (1990) 148.Google Scholar
  12. 12.
    G. A. DI LULLO, S. M. SWEENEY, J. KÖRKKÖ, L. ALA-KOKKO and J. D. SAN ANTONIO, J. Biol. Chem. 277 (2002) 4223.CrossRefGoogle Scholar
  13. 13.
    D. E. BIRK, E. I. ZYCBAND, S. WOODRUFF, D. A. WINKELMANN and R. L. TRELSTAD, Dev. Dyn. 208 (1997) 291.CrossRefGoogle Scholar
  14. 14.
    K. E. KADLER, D. F. HOLMES, J. A. TROTTER, and J. A. CHAPMAN, Biochem. J. 316 (1996) 1.Google Scholar
  15. 15.
    D. E. BIRK, E.I. ZYCBAND, S. WOODRUFF, D.A. WINKELMANN and R.L. TRELSTAD, Dev. Dyn. 208 (1997) 291.CrossRefGoogle Scholar
  16. 16.
    D. E. BIRK and E. ZYCKBAND, Prog. Clin. Biol. Res. 383B (1993) 523.Google Scholar
  17. 17.
    D. E. BIRK and E. ZYCKBAND, J. Anat. 184 (1994) 457.Google Scholar
  18. 18.
    D. E. BIRK, M. V. NURMINSKAYA and E. I. ZYCBAND, Dev. Dyn. 202 (1995) 229.Google Scholar
  19. 19.
    K. E. KADLER, Y. HOJIMA and D. J. PROCKOP, Biochem. J. 268 (1990) 339.Google Scholar
  20. 20.
    A. M. ROMANIC, E. ADACHI, Y. HOJIMA, J. ENGEL and D. J. J. PROCKOP, Biol. Chem. 267 (1992) 22265.Google Scholar
  21. 21.
    D. J. PROCKOP and D. J. S. HULMES, “Extracellular Matrix Assembly and Structure,” edited by P. D. Yurchenco, D. E. Birk and R. P. Mecham (Academic Press New York, 1994) p. 47.Google Scholar
  22. 22.
    K. G. DANIELSON, H. BARIBAULT, D. F. HOLMES, H. GRAHAM, K. E. KADLER and R. V. IOZZO, J. Cell Biol. 136 (1997) 729.CrossRefGoogle Scholar
  23. 23.
    S. CHAKRAVARTI, T. MAGNUSON, J. H. LASS, K. J. JEPSEN, C. LAMANTIA and H. J. CARROLL, J. Cell Biol. 141 (1998) 1277.CrossRefGoogle Scholar
  24. 24.
    L. SVENSSON, A. ASZODI, F. P. REINHOLT, R. FASSLER, D. HEINEGARD and A. OLDBERG, J. Biol. Chem. 274 (1999) 9636.CrossRefGoogle Scholar
  25. 25.
    L. M. SHAW and B. R. OLSEN, Trends Biochem. Sci. 16 (1991) 191.CrossRefGoogle Scholar
  26. 26.
    B. DUBLET and M. VAN DER REST, J. Biol. Chem. 262 (1987) 17724.Google Scholar
  27. 27.
    B. DUBLET and M. VAN DER REST, J. Biol. Chem. 266 (1991) 6853.Google Scholar
  28. 28.
    D. R. KEENE, G. P. LUNSTRUM, N. P. MORRIS, D. W. STODDARD and R. E. BURGESON, J. Cell Biol. 113 (1991) 971.CrossRefGoogle Scholar
  29. 29.
    C. WALCHLI, M. KOCH, M. CHIQUET, B.F. ODERMATT and B. TRUEB, J. Cell Sci. 107 (1994) 669.Google Scholar
  30. 30.
    B. B. YOUNG, M. K. GORDON and D. E. BIRK, Dev. Dyn. 217 (2000) 430.CrossRefGoogle Scholar
  31. 31.
    J. D. FERRY, Wiley, New York, NY (1970).Google Scholar
  32. 32.
    R. PETERS, J. PETERS, K.H. TEWS and W. BAHR, BIOCHIM. BIOPHYS. ACTA 367 (1974) 282.CrossRefGoogle Scholar
  33. 33.
    M. EDIDIN, Y. ZAGYANSKU and T. LARDENER, Sci. 191 (1976) 466.CrossRefGoogle Scholar
  34. 34.
    D. A. BERK, F. YUAN, M. LEUNIG and R. K. JAIN, Biophys. J. 65 (1993) 2428.Google Scholar
  35. 35.
    T. T. TSAY and K. A. JACOBSON, Biophys. J. 60 (1991) 360.CrossRefGoogle Scholar
  36. 36.
    R. K. JAIN, R. J. STOCK, S. R. CHARY and M. REUTER, Microvasc. Res. 39 (1990) 77.CrossRefGoogle Scholar
  37. 37.
    W. H. PRESS, S. A. TEUKOLKY, W. T. VETTERLING and B. P. FLANNERY, “Numerical Recipes in C,” 2nd edn (Cambridge University Press, Cambridge, UK, 1992).Google Scholar
  38. 38.
    L. MAKOWSKI and B. MAGDOFF-FAIRCHILD, Science 234 (1986) 1228.CrossRefGoogle Scholar
  39. 39.
    J. W. WEISEL, C. NAGASWAMI and L. MAKOWSKI, in Proc. Natl. Acad. Sci. USA 84 (1987) 8991.Google Scholar
  40. 40.
    D. E. BIRK, Micron. 32 (2001) 223.CrossRefGoogle Scholar
  41. 41.
    A. BORZACCHIELLO, P.A. NETTI and L. AMBROSIO, “New Frontiers in Medical Sciences: Redefining Hyaluronan”, edited by G. Abatangelo and P. H. Weigel (Elsevier Science, Amsterdam, 2000) p. 195.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • D. Guarnieri
    • 1
  • S. Battista
    • 1
  • A. Borzacchiello
    • 1
  • L. Mayol
    • 1
  • E. De Rosa
    • 1
  • D. R. Keene
    • 2
  • L. Muscariello
    • 1
  • A. Barbarisi
    • 1
  • P. A. Netti
    • 1
  1. 1.Interdisciplinary Centre of Biomedical Materials (CRIB)University of Naples Federico IINaplesItaly
  2. 2.Micro-Imaging CenterShriners Hospital for ChildrenPortland

Personalised recommendations