Lattice energy and mechanical stiffness of hydroxyapatite



The lattice energy of the stoichiometric hydroxyapatite is calculated using three methods: the thermochemical method called Born-Fajans-Haber cycle (BHFC), the semi-empirical electrostatic method based on the generalized Kapustinskii equation, and the Glasser-Jenkins unit cell volume method. The three values of the lattice energy of the hydroxyapatite derived by the three methods are within 4% difference to each other (BHFC: 34,191 KJ/mole, generalized Kapustinskii equation: 32,808.9 KJ/mole, unit cell volume: 32,997.4 KJ/mole). The Voigt and Reuss effective elastic moduli of 19 simple ionic crystals, including those of the hydroxyapaptite, are calculated and are found to be linearly dependent on their volumetric lattice energy density (LED).


Hydroxyapatite Osteogenesis Imperfecta Lattice Energy Ionic Crystal CsBr 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. T. LEE, M. T. DOVE and E. K. H. SALJE, J. Phys: Condens. Matter 22 (2000) 9829.CrossRefGoogle Scholar
  2. 2.
    C. REY, J. L. MIQUEL, L. FACCHINI, A. P. LEGRAND and M. J. GLIMCHER, Bone 16(5) (1995) 583.CrossRefGoogle Scholar
  3. 3.
    M. DE PODESTA, “Understanding the Properties of Matter,” (UCL Press, London, 1996).Google Scholar
  4. 4.
    R. A. ALBERTY and R. J. SILBEY, “Physical Chemistry” 1 st edn (John Wiley & Sons, New York, 1992).Google Scholar
  5. 5.
    W. J. MOORE, “Basic Physical Chemistry” (Prentice-Hall, New Jersey, 1983).Google Scholar
  6. 6.
    W. M. LATIMER, J. Am. Chem. Soc. 43 (1921) 818.CrossRefGoogle Scholar
  7. 7.
    N. J. FLORA, C. H. YODER and H. D. B. JENKINS, Inorg. Chem. 43(7) (2004) 2340.CrossRefGoogle Scholar
  8. 8.
    J. M. HUGHES, M. CAMERON and K. D. CROWLEY, Am. Mineral. 74 (1989) 870.Google Scholar
  9. 9.
    R. M. WILSON, J. C. ELLIOTT and S. E. P. DOWKER, Am. Mineral. 84 (1999) 1406.Google Scholar
  10. 10.
    L. GLASSER and H. D. B. JENKINS, J. Am. Chem. Soc. 122 (2000) 632.CrossRefGoogle Scholar
  11. 11.
    M. BORN and K. HUANG, “Dynamical Theory of Crystal Lattices,” (Clarendon Press, Oxford, England, 1954).Google Scholar
  12. 12.
    W. E. DASENT, “Inorganic Energetics, An Introduction,” 2nd edn (Cambridge University Press, Cambridge, England, 1982).Google Scholar
  13. 13.
    L. GLASSER, Inorg. Chem. 34 (1995) 4935.CrossRefGoogle Scholar
  14. 14.
    J. C. ELLIOT, “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates” (Elsevier, New York, 1994).Google Scholar
  15. 15.
    M. I. KAY, R. A. YOUNG and A. S. POSNER, Nature 204 (1964) 1050.CrossRefGoogle Scholar
  16. 16.
    A. S. POSNER, A. PERLOFF and A. F. DIORIO, Acta Cryst. 11 (1958) 308.CrossRefGoogle Scholar
  17. 17.
    K. SUDARSANAN and R. A. YOUNG, Acta Cryst. B25 (1969) 1534.Google Scholar
  18. 18.
    H. D. B. JENKINS and H. K. ROOBOTTOM, “CRC Handbook of Chemistry and Physics (2000/2001)”, (Chemical Rubber Company, CRC Press, Boca Raton, Florida, 2000).Google Scholar
  19. 19.
    D. R. LIDE, “CRC Handbook of Chemistry and Physics (2000/2001)”, (Chemical Rubber Company, CRC Press, Boca Raton, Florida, 2002/2003).Google Scholar
  20. 20.
    D. D. WAGMAN, W. H. EVANS, V. B. PARKER, R. H. SCHUMM, I. HALOW, S. M. BAILEY, K. L. CHURNEY and R. L. NUTTALL, “The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C organic subtances in SI units". American Chemical Society and the American Institute of Physics for the National Bureau of Standards, (Washington, D.C, 1982) .Google Scholar
  21. 21.
    H. D. B. JENKINS, H. K. ROOBOTTOM, J. PASSMORE and L. GLASSER, Inorg. Chem. 38 (1999) 3609.CrossRefGoogle Scholar
  22. 22.
    H. D. B. JENKINS and L. GLASSER, Inorg. Chem. 41 (2002) 4378.CrossRefGoogle Scholar
  23. 23.
    A. F. KAPUSTINSKII, Q. Rev., Chem. Soc. 10 (1956) 283.CrossRefGoogle Scholar
  24. 24.
    S. C. COWIN, Q. J. Mech. Appl. Math. 42(2) (1989) 249.Google Scholar
  25. 25.
    S. DONG, Y. WANG and J. LI, Chem. Phys. 270 (2001) 309.CrossRefGoogle Scholar
  26. 26.
    R. F. S. HEARMON, Adv. Phys. 5 (1956) 323.CrossRefGoogle Scholar
  27. 27.
    R. C. EVANS, “An Introduction to Crystal Chemistry,” 2nd edn (Cambridge University Press, 1964).Google Scholar
  28. 28.
    A. V. SHEVADE, L. ERICKSON, G. PIERZYNSKI and S. JIANG, J. Hazardous Substance Res. 3 (2001) 2-1.Google Scholar
  29. 29.
    C. M. SRIVASTAVA and C. SRINIVASAN, “Science of Engineering Materials” (Wiley Eastern Limited, New Delhi, India, 1987).Google Scholar
  30. 30.
    T. I. IVANOVA, O. V. FRANK-KAMENETSKAYA, A. B. KOL’TSOV and V. L. UGOLKOV, J. Solid State Chem. 160 (2001) 340.CrossRefGoogle Scholar
  31. 31.
    C. B. SMITH and D. A. SMITH, Calcif. Tissue Res. 22(2) (1976) 219.Google Scholar
  32. 32.
    C. REY, V. RENUGOPALAKRISHNAN, B. COLLINS and M. J. GLIMCHER, Calcified Tissue Int. 49 (1991) 251.Google Scholar
  33. 33.
    L. M. MILLER, C. S. CARLSON, G. L. CARR and M. R. CHANCE, Cell. Mol. Biol. 44(1) (1998) 117.Google Scholar
  34. 34.
    C. REY, M. SHIMIZU, B. COLLINS and M. J. GLIMCHER, Calcified Tissue Int. 46 (1990) 384.Google Scholar
  35. 35.
    U. VETTER, E. D. EANES, J. B. KOPP, J. D. TERMINE and P. G. ROBEY, Calcif. Tissue Int. 49 (1991) 248.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Bone Mechanics Laboratory, Department of Mechanical and Aerospace Engineering, RutgersState University of New JerseyUSA

Personalised recommendations