Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 17, Issue 12, pp 1403–1409 | Cite as

Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement

  • S. P. Kotha
  • C. Li
  • P. McGinn
  • S. R. Schmid
  • J. J. Mason
Article

Abstract

Acrylic bone cements are widely used in total joint arthroplasties to grout the prosthesis to bone. The changes in the tensile properties and fracture toughness of polymethylmethacrylate (PMMA) bone cements obtained by the addition of control and heat treated short titanium fibers are studied. Heat treatment of titanium fibers is conducted to precipitate titania particles on the fiber surface to improve the biocompatibility of the metal. Control and heat treated short titanium fibers (250 μ long and 20 μ diameter) were used as reinforcements at 3 volume %. X-ray diffraction indicated the presence of a rutile form of titania due to the heat treatments. The tensile and fracture properties were improved by the addition of fibers. Bone cements reinforced with titanium fibers heated at 550C for 1 h followed by 800C for 30 minutes show the largest increase in fracture toughness along with the smallest changes in elastic modulus and needs to be further investigated.

Keywords

Fracture Toughness PMMA Bone Cement SAHA Total Joint Arthroplasties 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    w. krause and r. s. mathis, J. Biomed. Mat. Res. 22(A1) (1988) 37.Google Scholar
  2. 2.
    g. lewis, J. Biomed. Mat. Res. 38(2) (1997) 155.CrossRefGoogle Scholar
  3. 3.
    j. graham, l. pruitt, m. ries and n. gundiah, J. Arthroplasty 15(8) (2000) 1028.CrossRefGoogle Scholar
  4. 4.
    g. lewis and s. mladsi, Biomaterials 19(1–3) (1998) 117.CrossRefGoogle Scholar
  5. 5.
    k.-d. kuhn, in “Bone Cements: Up-to-date comparison of physical and chemical properties of commercial materials” (New York: Springer, 2000) .Google Scholar
  6. 6.
    b. pourdeyhimi, h. d. wagner and p. schwartz, J. Mat. Sci. 21 (1986) 4468.CrossRefGoogle Scholar
  7. 7.
    b. pourdeyhimi and h. d. wagner, J. Biomed. Mat. Res. 23 (1989) 63.CrossRefGoogle Scholar
  8. 8.
    b. pourdeyhimi, y. ulcay, h. d. wagner, in “Thirteenth Annual Energy Sources Technology Conference and Exhibition, 1990” (New Orleans, LA, USA: ASME, NY, 1990) .Google Scholar
  9. 9.
    h. y. kim and h. k. yasuda, J. Biomed. Mat. Res. 48(2) (1999) 135.CrossRefGoogle Scholar
  10. 10.
    s. saha and s. pal, J. Biomed. Mat. Res. 17(6) (1983) 1041.CrossRefGoogle Scholar
  11. 11.
    s. shinzato, m. kobayashi, w. f. mousa, m. kamimura, m. neo and y. kitamura, J. Biomed. Mat. Res. 51(2) (2000) 258.CrossRefGoogle Scholar
  12. 12.
    y. s. kim, y. h. kang, j. k. kim and j. b. park, Biomed. Mat. Eng. 4 (1994) 37.Google Scholar
  13. 13.
    j. l. gilbert, s. s. net, and e. p. lauthenschlager, Biomaterials 16 (1995) 1043.CrossRefGoogle Scholar
  14. 14.
    l. d. t. topoleski, p. ducheyne, and j. m. cuckler, J. Biomed. Mat. Res. 26 (1992) 1599.CrossRefGoogle Scholar
  15. 15.
    l. d. t. topoleski, p. ducheyne, and j. m. cuckler, Biomaterials 19(17) (1998) 1569.CrossRefGoogle Scholar
  16. 16.
    c. i. vallo, J. Biomed. Mat. Res. 53 (2000) 717.CrossRefGoogle Scholar
  17. 17.
    m. abboud, and l. casaubieilh, f. morvan, m. fontanille, and e. duguet, J. Biomed. Mat. Res. 53(6) (2000) 728.CrossRefGoogle Scholar
  18. 18.
    m. m. vila, m. p. ginebra, f. j. gil, j. a. planell, J. Biomed. Mat. Res: App. Biomat. 48 (1999) 121.CrossRefGoogle Scholar
  19. 19.
    s. p. kotha, j. j. mason, s. r. schmid, c. li, s. charlebois and m. hawkins, Composites A (Submitted)Google Scholar
  20. 20.
    r. suzuki and j. a. frangos, Clin. Ortop. Rel. Res. 372 (2000) 280.CrossRefGoogle Scholar
  21. 21.
    s. mandl, d. krause, g. thorwarth, r. sader, f. zeilhofer, h. h. horch and b. rauschenbach, Surf. Coat. Tech. 142 (2001) 1046.CrossRefGoogle Scholar
  22. 22.
    E399-90. Standard test method for plane-strain fracture toughness of metallic materials. in “Annual Book of ASTM Standards” 03(01) (2000) 431.Google Scholar
  23. 23.
    s. p. kotha, c. li, s. r. schmid and j. j. mason, Accepted: J. Biomed. Mat. Res.Google Scholar
  24. 24.
    d. velten, v. biehl, f. aubertin, b. valeske, w. possart and j. breme, J. Biomed. Mat. Res. 59(1) (2002) 18.CrossRefGoogle Scholar
  25. 25.
    f. a. akin, h. zreiqat, s. jordan, m. b. j. wijesundara and l. hanley, J. Biomed. Mat. Res. 57(4) (2001) 588.CrossRefGoogle Scholar
  26. 26.
    s. m. kenny and m. buggy, J. Mat. Sci.: Mat. Med. 14(11) (2003) 923.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • S. P. Kotha
    • 1
  • C. Li
    • 2
  • P. McGinn
    • 2
  • S. R. Schmid
    • 3
  • J. J. Mason
    • 3
  1. 1.Department of Oral Biology, School of DentistryUniversity of Missouri–Kansas CityKansas City
  2. 2.Chemical EngineeringUniversity of Notre DameNotre Dame
  3. 3.Aerospace and Mechanical EngineeringUniversity of Notre DameNotre Dame

Personalised recommendations