Skip to main content

Advertisement

Log in

Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Acrylic bone cements are widely used in total joint arthroplasties to grout the prosthesis to bone. The changes in the tensile properties and fracture toughness of polymethylmethacrylate (PMMA) bone cements obtained by the addition of control and heat treated short titanium fibers are studied. Heat treatment of titanium fibers is conducted to precipitate titania particles on the fiber surface to improve the biocompatibility of the metal. Control and heat treated short titanium fibers (250 μ long and 20 μ diameter) were used as reinforcements at 3 volume %. X-ray diffraction indicated the presence of a rutile form of titania due to the heat treatments. The tensile and fracture properties were improved by the addition of fibers. Bone cements reinforced with titanium fibers heated at 550C for 1 h followed by 800C for 30 minutes show the largest increase in fracture toughness along with the smallest changes in elastic modulus and needs to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. w. krause and r. s. mathis, J. Biomed. Mat. Res. 22(A1) (1988) 37.

    CAS  Google Scholar 

  2. g. lewis, J. Biomed. Mat. Res. 38(2) (1997) 155.

    Article  CAS  Google Scholar 

  3. j. graham, l. pruitt, m. ries and n. gundiah, J. Arthroplasty 15(8) (2000) 1028.

    Article  CAS  Google Scholar 

  4. g. lewis and s. mladsi, Biomaterials 19(1–3) (1998) 117.

    Article  CAS  Google Scholar 

  5. k.-d. kuhn, in “Bone Cements: Up-to-date comparison of physical and chemical properties of commercial materials” (New York: Springer, 2000) .

    Google Scholar 

  6. b. pourdeyhimi, h. d. wagner and p. schwartz, J. Mat. Sci. 21 (1986) 4468.

    Article  CAS  Google Scholar 

  7. b. pourdeyhimi and h. d. wagner, J. Biomed. Mat. Res. 23 (1989) 63.

    Article  CAS  Google Scholar 

  8. b. pourdeyhimi, y. ulcay, h. d. wagner, in “Thirteenth Annual Energy Sources Technology Conference and Exhibition, 1990” (New Orleans, LA, USA: ASME, NY, 1990) .

  9. h. y. kim and h. k. yasuda, J. Biomed. Mat. Res. 48(2) (1999) 135.

    Article  CAS  Google Scholar 

  10. s. saha and s. pal, J. Biomed. Mat. Res. 17(6) (1983) 1041.

    Article  CAS  Google Scholar 

  11. s. shinzato, m. kobayashi, w. f. mousa, m. kamimura, m. neo and y. kitamura, J. Biomed. Mat. Res. 51(2) (2000) 258.

    Article  CAS  Google Scholar 

  12. y. s. kim, y. h. kang, j. k. kim and j. b. park, Biomed. Mat. Eng. 4 (1994) 37.

    CAS  Google Scholar 

  13. j. l. gilbert, s. s. net, and e. p. lauthenschlager, Biomaterials 16 (1995) 1043.

    Article  CAS  Google Scholar 

  14. l. d. t. topoleski, p. ducheyne, and j. m. cuckler, J. Biomed. Mat. Res. 26 (1992) 1599.

    Article  CAS  Google Scholar 

  15. l. d. t. topoleski, p. ducheyne, and j. m. cuckler, Biomaterials 19(17) (1998) 1569.

    Article  CAS  Google Scholar 

  16. c. i. vallo, J. Biomed. Mat. Res. 53 (2000) 717.

    Article  CAS  Google Scholar 

  17. m. abboud, and l. casaubieilh, f. morvan, m. fontanille, and e. duguet, J. Biomed. Mat. Res. 53(6) (2000) 728.

    Article  CAS  Google Scholar 

  18. m. m. vila, m. p. ginebra, f. j. gil, j. a. planell, J. Biomed. Mat. Res: App. Biomat. 48 (1999) 121.

    Article  CAS  Google Scholar 

  19. s. p. kotha, j. j. mason, s. r. schmid, c. li, s. charlebois and m. hawkins, Composites A (Submitted)

  20. r. suzuki and j. a. frangos, Clin. Ortop. Rel. Res. 372 (2000) 280.

    Article  Google Scholar 

  21. s. mandl, d. krause, g. thorwarth, r. sader, f. zeilhofer, h. h. horch and b. rauschenbach, Surf. Coat. Tech. 142 (2001) 1046.

    Article  Google Scholar 

  22. E399-90. Standard test method for plane-strain fracture toughness of metallic materials. in “Annual Book of ASTM Standards” 03(01) (2000) 431.

  23. s. p. kotha, c. li, s. r. schmid and j. j. mason, Accepted: J. Biomed. Mat. Res.

  24. d. velten, v. biehl, f. aubertin, b. valeske, w. possart and j. breme, J. Biomed. Mat. Res. 59(1) (2002) 18.

    Article  CAS  Google Scholar 

  25. f. a. akin, h. zreiqat, s. jordan, m. b. j. wijesundara and l. hanley, J. Biomed. Mat. Res. 57(4) (2001) 588.

    Article  CAS  Google Scholar 

  26. s. m. kenny and m. buggy, J. Mat. Sci.: Mat. Med. 14(11) (2003) 923.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kotha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotha, S.P., Li, C., McGinn, P. et al. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement. J Mater Sci: Mater Med 17, 1403–1409 (2006). https://doi.org/10.1007/s10856-006-0616-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0616-6

Keywords

Navigation