Skip to main content
Log in

Tissue reactions to bioabsorbable ciprofloxacin-releasing polylactide-polyglycolide 80/20 screws in rabbits’ cranial bone

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to assess tissue reactions to bioabsorbable self-reinforced ciprofloxacin-releasing polylactide/polyglycolide (SR-PLGA) 80/20 screws in rabbits’ cranial bone. Two screws were implanted in each rabbit, one screw on either side of the sagittal suture (n = 28 rabbits). Animals were sacrificed after 2, 4, 8, 16, 24, 54 and 72 weeks, four animals per group. On histological examination the number of macrophages, giant cells, active osteoblasts and fibrous tissue layers were assessed and degradation of the screws was evaluated. At 2 weeks, the highest number of macrophages and giant cells were seen near the heads of the screws. After 4 and 8 weeks, the number of giant cells decreased but that of macrophages decreased from 16 weeks and on. Screws were surrounded by fibrous tissue capsule that progressively was growing in thickness by time. Active osteoblasts were seen around the shaft of the screws with the highest number seen at 4 weeks postoperatively. At 16 weeks, compact fragmentation of the screw heads was seen with macrophages seen inside the screw matrices. After 24 weeks, no polarization of the screws was seen. After one year, PLGA screws had been replaced by adipose tissue, fibrous tissue and “foamy macrophages” which had PLGA particles inside them. After 1½ years, the amount of biomaterial remaining had decreased remarkably. The particles of biomaterial were inside “foamy macrophages.” Ciprofloxacin-releasing SR-PLGA 80/20 screws elicited a mild inflammatory reaction but did not interfere with osteoblast activity. No complications were seen when implanted in cranial bone of rabbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. NIE, D. NICOLAU, P. TESSIER, H. KOUREA, B. BROWNER and C. NIGHTINGALE, Use of a bioabsorbable polymer for the delivery of ofloxacin during experimental osteomyelitis treatment. J. Orthop. Res. 16 (1998) 76–79.

    Article  CAS  Google Scholar 

  2. P. BECKER, R. SMITH, R. WILLIAMS and J. DUTKOWSKY, Comparison of antibiotic release from polymethylmethacrylate beads and sponge collagen. J. Orthop. Res. 12 (1994) 737–741.

    Article  CAS  Google Scholar 

  3. J. CALHOUN and J. MADER, Treatment of osteomyelitis with a biodegradable antibiotic implant. Clin. Orthop. 341 (1997) 206–214.

    Article  Google Scholar 

  4. Y. SHINTO, A. UCHIDA, F. KORKUSUZ, N. ARAKI and K. ONO, Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J. Bone. Joint. Surg. Br. 74-B (1992) 600–604.

    Google Scholar 

  5. J. OVERBECK, S. WINCKLER, R. MEFFERT, P. TÖRMÄLÄ, H. SPIEGEL and E. BRUG, Penetration of ciprofloxacin into bone: A new bioabsorbable implant. J. Invest. Surg. 8 (1995) 155–162.

    CAS  Google Scholar 

  6. E. JACOB, J. SETTERSTRÖM, D. BACH, J. R. HEATH, L. MCNIESH and G. CIERNY, Evaluation of biodegradable ampicillin anhydrate microcapsules for local treatment of experimental staphylococcal osteomyelitis. Clin. Orthop. 267 (1991) 237–244.

    Google Scholar 

  7. P. OSTERMANN, S. HENRY and D. SELIGSON, The role of local antibiotic therapy in the management of compound fractures. Clin. Orthop. 295 (1993) 102–111.

    Google Scholar 

  8. M. GÜMÜ SDERELIOGLU and G. DENIZ, Sustained release of mitomycin-C from poly (DL-lactide) /poly (DL-lactide-co-glycolide) films. J. Biomater. Sci. 11 (2000) 1039–1050.

    Article  Google Scholar 

  9. C. TEUPE, R. MEFFERT, S. WINCKLER, W. RITZERFELD, P. TÖRMÄLÄ and E. BRUG, Ciprofloxacin-impregnated poly-L-lactic acid drug carrier. New aspects of a resorbable drug delivery system in local antimicrobial treatment of bone infections. Arch. Orthop. Trauma Surg. 112 (1992) 33–35.

    Article  CAS  Google Scholar 

  10. J. TIAINEN, M. VEIRANTO, E. SUOKAS, P. TÖRMÄLÄ and T. WARIS, M. Ninkovic and N. Ashammakhi, Bioabsorbable ciprofloxacin-containing and plain self-reinforced polylactide-polyglycolide 80/20 screws: pull-out strength properties in human cadaver parietal bones. J. Craniofac. Surg. 13 (2002) 427–433.

    Article  Google Scholar 

  11. S. LEINONEN, E. SUOKAS, M. VEIRANTO, P. TÖRMÄLÄ, T. WARIS and N. ASHAMMAKHI, Holding power of bioabsorbable ciprofloxacin-containing self-reinforced poly-L/DL-lactide 70/30 bioactive glass 13 miniscrews in human cadaver bone. J. Craniofac. Surg. 13 (2002) 212–218.

    Article  Google Scholar 

  12. N. ASHAMMAKHI, Neomembranes: A concept review with special reference to self-reinforced polyglycolide membranes. J. Biomed. Mater. Res. [Appl. Biomater.] 33 (1996) 297–303.

    Article  CAS  Google Scholar 

  13. B. EPPLEY and M. SADOVE, A comparison of resorbable and metallic fixation in healing of calvarial bone grafts. Plast. Reconstr. Surg. 96 (1995) 316–322.

    Article  CAS  Google Scholar 

  14. M. VEIRANTO, E. SUOKAS, N. ASHAMMAKHI and P. TÖRMÄLÄ, Novel bioabsorbable antibiotic releasing bone fracture fixation implants. Adv. Exp. Med. Biol. 553 (2004) 197–208.

    CAS  Google Scholar 

  15. S.-M. NIEMELÄ, I. IKÄ HEIMO, M. KOSKELA, M. VEIRANTO, E. SUOKAS, P. TÖRMÄLÄ, T. WARIS, N. ASHAMMAKHI and H. SYRJÄ LÄ, Ciprofloxacin-releasing bioabsorbable polymer is superior to titanium in preventing Staphylococcus epidermis attachment and biofilm formation in vitro. J. Biomed. Mater. Res. [Appl. Biomater.] (Accepted) .

  16. J. KITCHELL and D. WISE, Poly(lactic/glycolic acid) biodegradable drug-polymer matrix systems. Methods Enzymol. 112 (1985) 436–448.

    Article  CAS  Google Scholar 

  17. S. HUMPHREY, S. MEHTA, A. SEABER and T. VAIL, Pharmacokinetics of a degradable drug delivery system in bone. Clin. Orthop. 349 (1998) 218–224.

    Google Scholar 

  18. M. VERT, M. LI, G. SPENLEHAUER and P. GUERIN, Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci. Mater. Med. 3 (1992) 432–446.

    Article  CAS  Google Scholar 

  19. P. TÖRMÄLÄ, Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin. Mater. 10 (1992) 29–34.

    Article  Google Scholar 

  20. W. PIETRZAK, D. SARVER and M VERSTYNEN, Bioabsorbable polymer science for the practicing surgeon. J. Craniofac. Surg. 8 (1997) 87–91.

    CAS  Google Scholar 

  21. K. KNUUTILA, J. TIAINEN, M. VEIRANTO, E. SUOKAS, T. WARIS, P. TÖRMÄLÄ, O. KAARELA and N. ASHAMMAKHI, Pull-Out Strength Properties of Antibiotic Releasing Tacks in Human Cadaver Bone. Society for Biomaterials Symposium on Biomaterials in Regenerative Medicine: The Advent of Combination Products, Philadelphia, Pennsylvania, USA, 10 (2004) 16–18.

  22. P. D. HOLTOM, S. A. PAVKOVIC, P. D. BRAVOS, M. J. PATZAKIS, L. E. SHEPHERD and B. FRENKEL, Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J. Orthop. Res. 18 (2000) 721–727.

    Article  CAS  Google Scholar 

  23. T. MICLAU, M. L. EDIN, G. E. LESTER, R. W. LINDSEY and L. E. DAHNERS, Effect of ciprofloxacin on the proliferation of osteoblast-like MG-63 human osteosarcoma cells in vitro. J. Orthop. Res. 16 (1998) 509–512.

    Article  CAS  Google Scholar 

  24. A. C. PERRY, B. PRPA, M. S. ROUSE, K. E. PIPER, A. D. HANSSEN, J. M. STECKELBERG and R. PATEL, Levofloxacin and trovafloxacin inhibition of experimental fracture-healing. Clin. Orthop. 414 (2003) 95–100.

    Google Scholar 

  25. N. ASHAMMAKHI, H. PELTONIEMI, E. WARIS, R. SUURONEN, W. SERLO, M. KELLOMäKI, P. TÖRMÄLÄ and T. WARIS, Developments in craniomaxillofacial surgery: Use of self-reinforced polyglycolide and polylactide osteofixation devices. Review. Plast. Reconstr. Surg. 108 (2001) 167–180.

    Article  CAS  Google Scholar 

  26. J. HUNT and D. WILLIAMS, Quantifying the soft tissue response to implanted materials. Biomaterials. 16 (1995) 167–170.

    Article  CAS  Google Scholar 

  27. J. TIAINEN, Y. SOINI, P. TÖRMÄLÄ, T. WARIS and N. ASHAMMAKHI, Self-reinforced polylactide-polyglycolide 80/20 screws take more than 1 1/2 years to resorb in rabbit cranial bone. J. Biomed. Mater. Res. [Appl. Biomater.] 70B (2004) 49–55.

    Article  CAS  Google Scholar 

  28. M. HABAL and W. PIETRZAK, Key points in the fixation of the craniofacial skeleton with absorbable biomaterial. J. Craniofac. Surg. 10 (1999) 491–499.

    Article  CAS  Google Scholar 

  29. N. ASHAMMAKHI, Editorial. Reactions to Biomaterials: the Good, the Bad and Ideas for Developing New Therapeutic Approaches. J. Craniofac. Surg. 16 (2005) 195.

    Article  Google Scholar 

  30. G. VINCE, J. HUNT and D. WILLIAMS, Quantitative assessment of the tissue response to implanted biomaterials. Biomaterials. 12 (1991) 731–736.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Tiainen.

Additional information

Sources of support: Technology Development Center in Finland (TEKES, 90220), the European Commission (Biomedicine and Health Programme, European Union Demonstration Project BMH4-98-3892 and R&D Project QLRT-2000-00487), the Academy of Finland (Group of Excellence, Project 37726), and the Ministry of Education (Graduate School of Biomaterials and Tissue Engineering).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiainen, J., Soini, Y., Suokas, E. et al. Tissue reactions to bioabsorbable ciprofloxacin-releasing polylactide-polyglycolide 80/20 screws in rabbits’ cranial bone. J Mater Sci: Mater Med 17, 1315–1322 (2006). https://doi.org/10.1007/s10856-006-0606-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0606-8

Keywords

Navigation