Journal of Materials Science: Materials in Medicine

, Volume 17, Issue 11, pp 1063–1068 | Cite as

Synthesis and sintering of biomimetic hydroxyapatite nanoparticles for biomedical applications

  • Suprabha Nayar
  • M. K. Sinha
  • D. Basu
  • Arvind Sinha


Synthesis of monodisperse nanoparticles with uniform morphology and narrow size distribution as achieved by nature is a challenge to materials scientists. Mimicking the process of biomineralization has led to the development of biomolecules mediated synthesis of nanoparticles that overcomes many of the problems associated with nanoparticle synthesis. Termed as biomimetics this paradigm shift in the philosophy of synthesis of materials is very advantageous for the design-based synthesis of nanoparticles. The effect of concentration of a protein named bovine serum albumin on particle size, morphology and degree of crystallinity of biomimetically synthesized hydroxyapatite particles, has been studied. Results establish 0.5% protein as the required concentration to produce 30–40 nm sized hydroxyapatite particles with an optimum degree of crystallinity as required for biomedical applications. These particles synthesized under certain stringent conditions are found to have stoichiometric calcium:phosphorus ratio of 1.67 and exhibit restricted grain growth during sintering.


Apatite Crystal Bovine Serum Albumin Concentration Calcium Nitrate Tetrahydrate Bovine Serum Albumin Concen Adipamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. TADIC and M. EPPLE, Mechanically stable implants of synthetic bone mineral by cold isostatic pressing, Biomaterials 24 (2003) 4565.CrossRefGoogle Scholar
  2. 2.
    M. V. REGI, J. MARIA and G. CALBET, Calcium phosphates as substitution of bone tissues, Progress in Solid State Chemistry 32 (2004) 1.CrossRefGoogle Scholar
  3. 3.
    P. N. KUMTA, C. SFEIR, D. H. LEE, D. OLTON, D. CHOI, Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization, Acta Biomaterialia 1 (2005) 65.Google Scholar
  4. 4.
    Y. SOGO, A. ITO, K. FUKASAWA, T. SAKURAI and N. ICHINOSE, Zinc containing hydroxyaptite ceramics to promote osteoblastic cell activity, Materials Science and Technology 20 (2004) 1079.CrossRefGoogle Scholar
  5. 5.
    M. E. GOMES, A. S. RIBEIRO, P. B. MALAFAYA, R. L. REIS, A. M. CUNHA, A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour, Biomaterials 22 (2001) 883.CrossRefGoogle Scholar
  6. 6.
    S. V. DOROZHKIN AND M. EPPLE, Biological and chemical significance of calcium phosphate, Angew. Chem. Int. Ed Engle 41 (2002) 3130.CrossRefGoogle Scholar
  7. 7.
    S. H. RHEE, Y. SUETSUGU and J. TANAKA, Biomimetic configurational arrays of hydroxyapatite nanocrystals on bioorganics, Biomaterials 22 (2001) 2843.CrossRefGoogle Scholar
  8. 8.
    X. WANG, YUBAO LI, J. WEI and K. DE GROOT, Development of biomimetic nanohydroxyapatite/poly(hexame-thylene adipamide)composite, Biomaterials 23 (2002) 4787.CrossRefGoogle Scholar
  9. 9.
    LI-JUAN ZHANG, XU-SHENG FENG, HONG-GUO LIU, DONG-JIN QIAN, LI ZHANG, XI-LINGYU and FU-ZHAI CUI, Hydroxyapatite/collagen composites material formation in simulated body fluid environment, Materials Lett. 58 (2004) 719.CrossRefGoogle Scholar
  10. 10.
    T. KOKUBO, H. KUSHITANI, C. OHTSUKI. S. SAKKA, and T. YAMAMURO, Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid, J. Mater. Sci. Mater Med. 1 (1992) 79.CrossRefGoogle Scholar
  11. 11.
    S. MANN, DD ARCHIBALD, J. M. DIDYMUS, T. DOUGLAS, B. R. HEYWOOD, F. C. MELDRUM and N. J. REEVES, Crystallization at inorganic–organic interfaces: biominerals and biomimetic synthesis, Science 261 (1993) 1286.Google Scholar
  12. 12.
    S. MANN, Molecular recognition in biomineralization, Nature 332 (1998) 119.CrossRefGoogle Scholar
  13. 13.
    A. SINHA, S. NAYAR, A. AGRAWAL, D. BHATTACHARYYA and P. RAMACHANDRARAO, Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic and biopolymers, J. Am Cer. Soc. 86 (2003) 357.Google Scholar
  14. 14.
    T. PETERS, Advances in Protein Chemistry (1985) 161.Google Scholar
  15. 15.
    H. B. WEN, J. R. DE WIJN, C. A. VAN BLITTERSWIJK and K. DE GROOT, J. Biomed. Mater. Res. 46 (1999) 245.CrossRefGoogle Scholar
  16. 16.
    Y. LIU, P. LAYROLLE, J. DE BRUIJN, C. A. VAN BLITTERSWIJK and K. DE GROOT, J. Biomed. Mater. Res. 57 (2001) 327.CrossRefGoogle Scholar
  17. 17.
    K. FLADE, C. LAU, M. MERTIG and W. POMPE, Chem. Mater. 13(3) (2001) 596.Google Scholar
  18. 18.
    S. V. DOROZHKIN and E. I. DOROZHKINA, Colloid and Surfaces A 215 (2003) 191.CrossRefGoogle Scholar
  19. 19.
    S. NAYAR and A. SINHA, Biomimetic self assembled apatite film in polyvinyl alcohol-collagen film, Colloids and Surfaces B 35 (2004) 29.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Suprabha Nayar
    • 1
  • M. K. Sinha
    • 2
  • D. Basu
    • 2
  • Arvind Sinha
    • 1
  1. 1.National Metallurgical LaboratoryJamshedpurIndia
  2. 2.Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations