Surface modification of Ti45Nb alloy by immobilization of RGD peptide via self assembled monolayer

  • G. Zorn
  • I. Gotman
  • E. Y. Gutmanas
  • R. Adadi
  • C. N. Sukenik


A new low modulus β Ti-Nb alloy with low elastic modulus and excellent corrosion resistance is currently under consideration as a surgical implant material. The usefulness of such materials can be dramatically enhanced if their surface structure and surface chemistry can be controlled. This control is achieved by attaching a self assembled monolayer (SAM) based on 11-chloroacetyl-1-undecylphosphonic acid, CAUDPA, to the surface and immobilization of a peptide to the monolayer. The SAM is characterized by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) at two different takeoff angles. The CAUDPA molecules were covalently bonded on the substrate in a configuration in which the phosphonic group turns toward the Ti45Nb while the acetyl chloride end group tail turns to the topmost surface. In such configuration sequential in situ reaction is possible by exchange between the chloride and a biological molecule. Such biological molecule is the arginine-glycine-aspartic acid-cysteine, RGDC, small amino acid sequence present in many molecules of the extracellular matrix. Preliminary cell culture in-vitro result shows an improvement of the response of osteoblast cells to Ti45Nb after the peptide immobilization.


Self Assemble Monolayer Phosphonic Group Bulk Mode Takeoff Angle Organic Coat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors want to thank Dr. Reuven Brener from the Solid State Institute, Technion for his assistance in XPS analyses, and Dr. Anna Weiss from the Medical Faculty, Technion for cell culture preparation. We acknowledge the financial support of G.I.F. Research Grant N0 I-810-236.10/200, Commission of the European Communities, Network of Excellence EXCELL and of the Minerva Center for Tailored Biomaterial Interfaces at Bar Ilan University.


  1. 1.
    M. NIINOMI, Biomaterials 24 (2003) 2673CrossRefGoogle Scholar
  2. 2.
    E. B. TADDEI, V. A. R. HENRIQUES, C. R. M. SILVA and C. A. A. CAIRO, Mater. Sci. Eng. C 24 (2004) 683CrossRefGoogle Scholar
  3. 3.
    R. GODLEY, D. STAROSVETSKY and I. GOTMAN, J. Mater. Sci: Mater. Med. 16 (2005) 1CrossRefGoogle Scholar
  4. 4.
    B. KASEMO, J Prosthet Dent 49 (1983) 832CrossRefGoogle Scholar
  5. 5.
    A. G. GRISTINA, Science 237 (1987) 1588CrossRefGoogle Scholar
  6. 6.
    E. RUOSLAHTI and M. D. PIERSCHBACHER, Science 238 (1987) 491CrossRefGoogle Scholar
  7. 7.
    D. M. FERIS, G. D. MOODIE, D. M. DIMOND, C. W. D. GIORANNI, M. G. ERLICH and R. F. VALENTINI, Biomaterials 20 (1999) 2323CrossRefGoogle Scholar
  8. 8.
    N. BALACHNDER and C. N. SUKENIK, Langmuir 6 (1990) 1621CrossRefGoogle Scholar
  9. 9.
    C. D. BAIN, E. B. TROUGHTON, Y. T. TAO, J. EVALL, G. M. WHITESIDES, R. G. NUZZO, J Am Chem Soc 111 (1989) 321CrossRefGoogle Scholar
  10. 10.
    L. H. DUBOIS and R. G. NUZZO, Ann. Rev. Phys. Chem. 43 (1992) 437Google Scholar
  11. 11.
    A. ULMAN, Chem. Rev. 96 (1996) 1533CrossRefGoogle Scholar
  12. 12.
    S. J. XIAO, M. TEXTOR and N. D. SPENCER, Langmuir 14 (1998) 5507CrossRefGoogle Scholar
  13. 13.
    E. S. GAWALT, M. J. AVALTRONI, M. P. DANAHY, B. M. SILVERMAN, E. L. HANSON, K. S. MIDWOOD, J. E. SCHWARZBAUER and J. SCHWARTZ, Langmuir 19 (2003) 200CrossRefGoogle Scholar
  14. 14.
    D. BROVELLI, G. HÄHNER, L. RUIZ, R. HOFER, G. KRAUS, A. WALDNER, J. SCHLÖSSER, P. OROSZLAN, M. EHART and N. D. SPENCER, Langmuir 15 (1999) 4324CrossRefGoogle Scholar
  15. 15.
    M. TEXTOR, L. RUIZ, R. HOFER, A. ROSSI, K. FELDMAN, G. HÄHNER and N. D. SPENCER, Langmuir 16 (2000) 3257CrossRefGoogle Scholar
  16. 16.
    J. L. FANG, N. J. WU, Z. W. WANG and Y. LI, Corrosion 47 (1991) 169Google Scholar
  17. 17.
    J. G. Van ALSTEN, Langmuir 15 (1999) 7605CrossRefGoogle Scholar
  18. 18.
    E. S. GAWALT, M. J. AVALTRONI, N. KOCH and J. SCHWARTZ, Langmuir 17 (2001) 5736CrossRefGoogle Scholar
  19. 19.
    J. LAUSMAA, B. KASEMO, H. MATTSSON and H. ODELIUS, App. Surf. Sci. 45 (1990) 189CrossRefGoogle Scholar
  20. 20.
    J. LAUSMAA, B. KASEMO, U. ROLANDER, L. M. BJURSTEN, L. E. ERICSON, L ROSANDER, P. THOMSEN, in “Surface Characterization of Biomaterials”, edited by B. D. Ratner (Elsevier, 1988) p. 161Google Scholar
  21. 21.
    Y. SAHOO, H. PIZEM, T. FRIED, D. GOLODNITSKY, L. BURSTEIN, C. N. SUKENIK and G. MARKOVICH, Langmuir 17 (2001) 7907CrossRefGoogle Scholar
  22. 22.
    G. ZORN, I. GOTMAN, E. Y. GUTMANAS, R. ADADI, G. SALITRA and C. N. SUKENIK, Chem. Mater. 17 (2005) 4218CrossRefGoogle Scholar
  23. 23.
    S. TOSATTI, R. MICHEL, M. TEXTOR and N. D. SPENCER, Langmuir 18 (2002) 3537CrossRefGoogle Scholar
  24. 24.
    Y. WADA, H. KATAOKA, S. YOKOSE, T. ISHIZUYA, K. MIYAZONO, Y. -H. GAO, Y. SHIBASAKI and A. YAMAGUCHI, Bone 22 (1998) 479CrossRefGoogle Scholar
  25. 25.
    G. ZORN, A. LESMAN, I. GOTMAN, Surface Coat. Techn., (in press)Google Scholar
  26. 26.
    H. YAMAMOTO, R. A. BUTERA, Y. GU and D. H. WALDECK, Langmuir 15 (1999) 8640CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. Zorn
    • 1
  • I. Gotman
    • 1
  • E. Y. Gutmanas
    • 1
  • R. Adadi
    • 2
  • C. N. Sukenik
    • 2
  1. 1.Faculty of Materials EngineeringTechnionHaifaIsrael
  2. 2.Department of ChemistryBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations