Growth and characterization of hydroxyapatite crystals by hydrothermal method

  • M. Ashok
  • S. Narayana Kalkura
  • N. Meenakshi Sundaram
  • D. Arivuoli


Hydroxyapatite crystals were grown by hydrothermal method using dicalcium phosphate dihydrate crystals as a starting material. The grown crystals were found to be free from carbonate inclusion. Two distinct morphologies were obtained by following two different growth methods. Controlled slow growth process and rapid growth process results in hexagonal and whisker like morphologies.


Hydrothermal Hydroxyapatite Whisker 



Author M.A acknowledges Dr. R. Nithya, MSD, IGCAR, India, for helping in XRD studies and Dr. P. Murugavel and Prof. J.C. Kim, School of physics, SNU, Korea for their valuable discussion during the preparation of manuscript. Authors also acknowledges IUC-DAEF and UGC for there financial support.


  1. 1.
    Y. LIU, D. HOU and G. WANG, Mater. Chemis. Phys. 86 (2004) 69CrossRefGoogle Scholar
  2. 2.
    S. V. DOROZHKIN and M. EPPLE, Angew. Chem. Int. Ed. 41 (2002) 3130CrossRefGoogle Scholar
  3. 3.
    D. TADIC, A. VERESOV, V. I. PUTLAYEV and M. EPPLE, Mat.-wiss.u.Werkstofftech. 34 (2003) 1048CrossRefGoogle Scholar
  4. 4.
    F. PETERS and M. EPPLE, J. Chem. Soc, Dalton Trans. (2001) 3585Google Scholar
  5. 5.
    W.-J. SHIH, Y. F. CHEN, M.-C. WANG and M.-H HON, J. Crystal Growth 270 (2004) 211CrossRefGoogle Scholar
  6. 6.
    S. N. KALKURA, T. K ANEE, M. ASHOK and C. BETZEL, Bio-Med. Mater. Eng. 14 (2004) 581Google Scholar
  7. 7.
    S. BEN and S. MARUNO, J. Biomed. Mater. Res. 42 (1998)387. CrossRefGoogle Scholar
  8. 8.
    J. A. DARR, Z. X. GUO, V. RAMAN, M. BOUOUDINA and I. U. REHMAN, Chem. Commun. 6 (2004) 696CrossRefGoogle Scholar
  9. 9.
    M. AIZAWA, A. E. PORTER, S. M. BEST and W. BONFIELD, Biomaterials 26 (2005) 3427CrossRefGoogle Scholar
  10. 10.
    S. BUSCH, Angew. Chem. Int. Ed. 43 (2004) 1428CrossRefGoogle Scholar
  11. 11.
    E. F. BRES and J. L. HUTCHISON, J. Biomed Mater. Res. 63 (2002) 433CrossRefGoogle Scholar
  12. 12.
    J. LIU, X. YE, H. WANG, M. ZHU, B. WANG and H. YAN, Ceram. Int. 29 (2003) 629CrossRefGoogle Scholar
  13. 13.
    M. YOSHIMURA, P. SUJARIDWORAKUN, F. KOH, T. FUJIWARA, D. PONGKAO and A. AHNIYAZ, Mater. Sci. Eng. C 24 (2004) 521Google Scholar
  14. 14.
    R. E. RIMAN, W. L. SUCHANEK, K. BYRAPPA, C. W. CHEN, P. SHUK and C. S. OAKES, Solid state Ionic 151 (2002) 393CrossRefGoogle Scholar
  15. 15.
    K. ISHIKAWA and E. D. EANES, J. Dent. Res. 72 (1993) 474Google Scholar
  16. 16.
    K. ZHU, K. YANAGISAWA, A. ONDA and K. KAJIYOSHI, J. Solid State Chemis. 177 (2004) 4379CrossRefGoogle Scholar
  17. 17.
    Y. HAN, K. XU and J. LU, J. Mater. Sci.: Mater. Med. 10 (1999) 243CrossRefGoogle Scholar
  18. 18.
    R. ROOP KUMAR and M. WANG, Mater. Lett. 49 (2001) 15CrossRefGoogle Scholar
  19. 19.
    G. R. SIVAKUMAR, E. K. GIRIJA, S. NARAYANA KALKURA and C. SUBRAMANIAN, Cryst. Res. Technol. 33 (1998) 197CrossRefGoogle Scholar
  20. 20.
    S. KOUTSOPOULOS, J. Biomed. Mater. Res. 62 (2002) 600CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Ashok
    • 1
  • S. Narayana Kalkura
    • 2
  • N. Meenakshi Sundaram
    • 2
  • D. Arivuoli
    • 3
  1. 1.Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Crystal Growth CentreAnna UniversityChennaiIndia
  3. 3.Department of PhysicsAnna UniversityChennaiIndia

Personalised recommendations