The role of ammonium citrate washing on the characteristics of mechanochemical–hydrothermal derived magnesium-containing apatites

  • Chun-Wei Chen
  • Wojciech L. Suchanek
  • Pavel Shuk
  • Kullaiah Byrappa
  • Charles Oakes
  • Richard E. Riman
  • Kelly Brown
  • Kevor S. TenHuisen
  • Victor F. Janas


The role of citrate washing on the physical and chemical characteristics of magnesium-substituted apatites (HAMgs) was performed. HAMgs were synthesized by a mechanochemical–hydrothermal route at room temperature in as little as 1 h, which is five times faster than our previous work. Magnesium-substituted apatites had concentrations as high as 17.6 wt% Mg with a corresponding specific surface area (SSA) of 216 m2/g. A systematic study was performed to examine the influence of increasing magnesium content on the physical and chemical characteristics of the reaction products. As the magnesium content increased from 0 to 17.6 wt%, magnesium-doped apatite crystallite size decreased from 12 to 8.8 nm. The Mg/(Mg + Ca) ratio in the product was enriched relative to that used for the reacting precursor solution. During mechanochemical–hydrothermal reaction, magnesium doped apatites co-crystallize with magnesium hydroxide. Citrate washing serves to remove the magnesium hydroxide phase. The concomitant increase in surface area results because of the removal of this phase. Possible mechanisms for magnesium hydroxide leaching are discussed to explain the measured trends.


Apatite Magnesium Content Amorphous Calcium Phosphate Magnesium Hydroxide Apatite Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Johnson & Johnson Center for Biomaterials and Advanced Technologies, the Center for Biomedical Devices at Rutgers University, and the National Institute of Health.


  1. 1.
    C. REY, in “Calcium Phosphates in Biological and Industrial Systems”, edited by Z. AMJAD, Kluwer Academic Publishers, Boston, 1998 p. 217Google Scholar
  2. 2.
    E. BERTONI, A. BIGI, G. COJAZZI, M. GANDOLFI, S. PANZAVOLTA and N. ROVERI, J. Inorg. Biochem. 72 (1998) 29CrossRefGoogle Scholar
  3. 3.
    H. AOKI, (1991) Science and medical applications of hydroxyapaptite. Tokyo: Japanese Association of Apatite Science, p. 1Google Scholar
  4. 4.
    K. De GROOT, in “Bioceramics of calcium phosphate”, edited by K. DE GROOT, CRC Press, Roca Raton, 1983, p. 131Google Scholar
  5. 5.
    J. C. ELLIOTT, (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier, p. 111Google Scholar
  6. 6.
    R. Z. LeGEROS, (1991) “Monographs in Oral Science” edited by H. M. MYERS, vol. 15. Karger, Basel, p. 46Google Scholar
  7. 7.
    A. BIGI, E. FORESTI, R. GREGORINI, A. RIPAMONTI, N. ROVERI and J. S. SHAH, Calcif. Tissue Int. 50 (1992) 439CrossRefGoogle Scholar
  8. 8.
    W. G. M. Van Den HOEK, T. P. FEENSTRA and P. L. De BRUYN, J. Phys. Chem. 84 (1980) 3312CrossRefGoogle Scholar
  9. 9.
    A. S. HALLSWORTH, C. ROBINSON and J. A. WEATHERELL, Caries Res. 7 (1973) 345Google Scholar
  10. 10.
    T. P. FEENSTRA, J. HOP and P. L. DEBRUYN, J. Colloid Interface Sci. 83 (1981) 583CrossRefGoogle Scholar
  11. 11.
    A. BIGI, G. FALINI, E. GORESTI, M. GAZZANO, A. RIPANONTI and N. ROVERI, J. Inorg. Biochem. 49 (1993) 69CrossRefGoogle Scholar
  12. 12.
    I. MAYER, R. SCHLAM and F. D. B. FEATHERSTONE, J. Inorg. Biochem. 66 (1997) 1CrossRefGoogle Scholar
  13. 13.
    A. BIGI, G. FALINI, E. FORESTI, M. GAZZANO, A. RIPAMONTI and N. ROVERI, Acta Cryst. B52 (1996) 87Google Scholar
  14. 14.
    A. YASUKAWA, S. OUCHI, K. KANDORI and T. ISHIKAWA, J. Mater. Chem. 6 (1996) 1401CrossRefGoogle Scholar
  15. 15.
    T. HANAZAWA, M. AIZAWA, F. S. HOWELL and K. ITATANI, Phosphorus Res. Bull. 9 (1999) 5Google Scholar
  16. 16.
    A. TAMPIERI, G. CELOTTI, E. LANDI and M. SANDRI, Key Eng. Mater. 254 (2004) 264Google Scholar
  17. 17.
    K. J. LILLEY, Y. GBURECK, J. C. KNOWLES, D. F. FARRAR and J. E. BARRALET, J. Mater. Sci.: Mater. Med. 16 (2005) 455CrossRefGoogle Scholar
  18. 18.
    M. OKAZAKI, J. TAKAHASHI and K. KIMURA, Caries Res. 20 (1986) 324CrossRefGoogle Scholar
  19. 19.
    P. SHUK, W. L. SUCHANEK, T. HAO, E. GULLIVER, R. E. RIMAN, M. SENNA, K. S. TENHUISEN and V. F. JANAS, J. Mater. Res. 16 (2001) 1231Google Scholar
  20. 20.
    C.-W. CHEN, C. S. OAKES, K. BYRAPPA, R. E. RIMAN, K. BROWN, K. S. TENHUISEN and V. F. JANAS, J. Mater. Chem. 14 (2004) 2425CrossRefGoogle Scholar
  21. 21.
    C.-W. CHEN, R. E. RIMAN, K. BROWN, K. S. TENHUISEN and V. F. JANAS, J. Crystal Growth 270 (2004) 615CrossRefGoogle Scholar
  22. 22.
    W. L. SUCHANEK, K. BYRAPPA, P. SHUK, R. E. RIMAN, V. F. JANAS and K. S. TENHUISEN, Biomaterials 25 (2004) 4647CrossRefGoogle Scholar
  23. 23.
    R. A. NYQUIST and O. K. RONALD, (1971) Infrared spectra of inorganic compounds. New York: Academic Press, p. 235Google Scholar
  24. 24.
    A. TAMPIERI, G. CELOTTI, S. SPRIO and C. MINGAZZINI, Mater. Chem. Phys. 64 (2000) 54CrossRefGoogle Scholar
  25. 25.
    S. SCHNEIDER, (1991) Ceramics and Glasses, Engineered Materials Handbook, Vol 4. ASM International, p. 427Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chun-Wei Chen
    • 1
  • Wojciech L. Suchanek
    • 1
    • 3
  • Pavel Shuk
    • 1
    • 4
  • Kullaiah Byrappa
    • 1
    • 5
  • Charles Oakes
    • 1
  • Richard E. Riman
    • 1
  • Kelly Brown
    • 2
  • Kevor S. TenHuisen
    • 2
    • 6
  • Victor F. Janas
    • 2
  1. 1.Department of Ceramic and Materials EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Center for Biomaterials and Advanced TechnologiesMedical Devices Group, a Division of Ethicon, Inc.SomervilleUSA
  3. 3.Sawyer Technical Materials, LLCEastlakeUSA
  4. 4.Rosemount Analytic INC.OrrvilleUSA
  5. 5.Department of GeologyUniversity of MysoreMysoreIndia
  6. 6.Reconstructive BusinessStryker Howmedica OsteonicsAllendaleUSA

Personalised recommendations