Advertisement

Supramolecular structure of human aortic valve and pericardial xenograft material: atomic force microscopy study

  • Maria Jastrzebska
  • Iwona Mróz
  • Bogdan Barwiński
  • Justyna Zalewska-Rejdak
  • Artur Turek
  • Beata Cwalina
Article

Abstract

Pericardial tissue (bovine or porcine), chemically stabilized with glutaraldehyde (GA), is widely used in cardiovascular surgery in the form of bioprosthetic valves. GA reacts with tissue proteins and creates inter- and intra-molecular cross-links, resulting in improved durability. However, tissue calcification and mechanical damage are still unresolved problems. The purpose of this study was to examine the surface topography of normal human aortic valve and GA-stabilized porcine pericardium tissue in order to gain comparative insight into supramolecular structure of both tissues. The analysis was focused on morphologic evaluation of collagen constituents of the tissues. Atomic force microscopy working in the contact mode in air was employed in the study. Considerable diversity in the spatial orientation of collagen fibrils for the human aortic valve and pericardial tissue were observed. It was found that different forms of collagen fibril packing, i.e. dense and “in phase” or loose, could have an impact on the collagen D-banding pattern. Stabilization with GA introduced significant changes in the surface topography of collagen fibrils and in their spatial organization on the tissue surface. Strong disturbance in the fibril’s D-spacing was observed. It was also suggested, that the observed structural changes at the supramolecular level might make an important contribution to the progressive damage and calcification of the tissue. The presented results demonstrate that the AFM method can be useful for non-destructive structural characterization of heart valves and bioprosthetic heart valve material.

Keywords

Atomic Force Microscopy Fibril Aortic Valve Heart Valve Collagen Fibril 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Dr. J. Nozynski from the Department of Histology and Embryology of the Medical University of Silesia, Poland, for the preparation of human aortic valve and helpful discussion.

This work was supported by the State Committee for Scientific Research (KBN, Poland) under Project No. NN-2-365/05.

References

  1. 1.
    F. J. SCHOEN and R. J. LEVY, J. Biomed. Mater. Res. 47 (1999) 439CrossRefGoogle Scholar
  2. 2.
    M. H. YACOB and L. H. COHN, Circulation 109 (2004) 942CrossRefGoogle Scholar
  3. 3.
    C. K. BREUER, B. A. METTLER, A. TIFFANY, V. L. SALES, F. J. SCHOEN and J. E. MAYER, Tissue Engineering 10 (2004) 1725CrossRefGoogle Scholar
  4. 4.
    E. JORGE-HERRERO, J. M. GARCIA PAEZ, DEL CASTILLO-OLIVARES RAMOS, J. Applied Biomater. Biomech. 3 (2005) 67Google Scholar
  5. 5.
    E. JORGE-HERRERO, P. FERNANDEZ, J. TURNAY, N. OLMO, P. CALERO, R. GARCIA, I. FREILE and J. L. CASTILLO-OLIVARES, Biomaterials 20 (1999) 539CrossRefGoogle Scholar
  6. 6.
    J. M. HURLE, E. COLVE and M. A. FERNANDEZ-TERAN, Anat. Embryol. 172 (1985) 61CrossRefGoogle Scholar
  7. 7.
    M. MIRZAIE, T. MEYER, P. SCHWARTZ, S. LOTFI, A. RASTAN and F. SCHÖNDUBE, Ann. Thorac. Cardiovasc. Surg. 8 (2002) 24Google Scholar
  8. 8.
    M. MIRZAIE, M. SCHULTZ, P. SCHWARTZ, M. COULIBALY and F. SCHÖNDUBE, Ann. Thorac. Cardiovasc. Surg. 9 (2003) 163Google Scholar
  9. 9.
    S. L. HILBERT, V. J. FERRANS and W. M. SWANSON, J. Biomed. Mater. Res. 20 (1986) 1411CrossRefGoogle Scholar
  10. 10.
    D. DATTA, P. K. KUNDU and B. N. BANDYOPADHYAY, Artif. Organs, 23 (1999) 372. CrossRefGoogle Scholar
  11. 11.
    B. P. JENA and J. K. H. HÖRBER, 2002, in “Atomic force microscopy in cell biology. Methods in cell biology” (Amsterdam, London, New York: Academic Press) p. 1–64. Google Scholar
  12. 12.
    J. M. GARCIA PAEZ, E. JORGE-HERRERO, A. CARRERA, I. MILLAN, A. ROCHA, J. SALVADOR, J. MENDEZ, G. TELLEZ and J. L. CASTILLO-OLIVARES, J. Mater. Sci. Mater. Med, 12 (2001) 425CrossRefGoogle Scholar
  13. 13.
    J. M. GARCIA PAEZ, A. CARRERA, E. J. HERRERO, I. MILLAN, A. ROCHA, A. CORDON, N. SAINZ, J. MENDEZ and J. L. CASTILLO-OLIVARES, J. Biomater. Appl. 16 (2001) 68CrossRefGoogle Scholar
  14. 14.
    J. M. GARCIA-PAEZ, E. JORGE, A. ROCHA, J. L. CASTILLO-OLIVARES, I. MILLAN, A. CARRERA, A. CORDON, G. TELLEZ and R. BURGOS, J. Mater. Sci. Mater. Med. 13 (2002) 477CrossRefGoogle Scholar
  15. 15.
    J. M. GARCIA-PAEZ, E. JORGE-HERRERO, A. CARRERA, I. MILLAN, A. ROCHA, P. CALERO, A. CORDON, J. SALVADOR, N. SAINZ, J. MENDEZ and J. L. CASTILLO-OLIVARES, Biomaterials, 22 (2001) 2759CrossRefGoogle Scholar
  16. 16.
    W. A. NAIMARK, J. M. LEE, H. LIMEBACK and D. T. CHEUNG, Am. J. Physiol. 263 (HEART CIRC. PHYSIOL. 32) (1992) H1095Google Scholar
  17. 17.
    J. T. ROSENTHAL, B. W. SHAW and R. L. HARDESTY, Ann. Surg., 198 (1983) 617 CrossRefGoogle Scholar
  18. 18.
    D. SIMIONESCU, A. SIMIONESCU, R. DEAC, J. Biomed. Mater. Res. 27 (1993) 697 CrossRefGoogle Scholar
  19. 19.
    A. JAYAKRISHNAN and S. R. JAMEELA, Biomaterials 17 (1996) 471CrossRefGoogle Scholar
  20. 20.
    M. JASTRZEBSKA, B. BARWINSKI, I. MROZ, A. TUREK, J. ZALEWSKA-REJDAK and B. CWALINA, Eur. Phys. J. E, 16 (2005) 381CrossRefGoogle Scholar
  21. 21.
    A. STEVENS and J. LOWE, 1997, in “Human histology” (Amsterdam, London, New York: Mosby) p. 147Google Scholar
  22. 22.
    D. R. BASELT, J. P. REVEL and J. D. BALDESCHWIELER, Biophys. J. 65 (1993) 2644CrossRefGoogle Scholar
  23. 23.
    I. REVENKO, F. SOMMER, D. T. MINK, R. GARRONE and J. M. FRANC, Biol. Cell 80 (1994) 67CrossRefGoogle Scholar
  24. 24.
    M. RASPANTI, A. ALESSANDRINI, V. OTTANI and A. RUGGERI, J. Struct. Biol. 119 (1997) 118CrossRefGoogle Scholar
  25. 25.
    M. VENTURONI, T. GUTSMANN, G. E. FANTNER, J. H. KINDT and P. K. HANSMA, Biochem. Biophys. Res. Commun. 303 (2003) 508CrossRefGoogle Scholar
  26. 26.
    M. JASTRZEBSKA, R. WRZALIK, A. KOCOT, J. ZALEWSKA-REJDAK and B. CWALINA, J. Raman Spectrosc. 34 (2003) 424CrossRefGoogle Scholar
  27. 27.
    M. E. NIMNI and R. D. HARKNES, 1998, in “Collagen:biochemistry Vol.1” (Boca Raton, FL: CRC Press) p. 1–7Google Scholar
  28. 28.
    B.B. TOMAZIC, Zeitschrift fur Kardiologie, Band 90, suppl. 3 (2001) III68Google Scholar
  29. 29.
    J. M. CONNOLLY, I. ALFERIEV, J. N. CLARK-GRUEL, N. EIDELMAN, M. SACKS, E. PALMATORY, A. KRONSTEINER, S. DEFELICE, J. XU, R. OHRI, N. NARULA, N. VYAVAHARE and R. J. LEVY, Am. J. Pathol. 166 (2005) 1Google Scholar
  30. 30.
    D. MIKROULIS, D. MAVRILAS, J. KAPOLOS, P. G. KOUTSOUKOS and C. LOLAS, J. Mater. Sci. Mater. Med. 13 (2002) 885CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Maria Jastrzebska
    • 1
  • Iwona Mróz
    • 2
  • Bogdan Barwiński
    • 2
  • Justyna Zalewska-Rejdak
    • 1
  • Artur Turek
    • 1
  • Beata Cwalina
    • 1
  1. 1.Department of Biophysics, Faculty of PharmacyMedical University of SilesiaSosnowiecPoland
  2. 2.Institute of Experimental PhysicsUniversity of WrocławWroclawPoland

Personalised recommendations