Advertisement

Hysteresis of a biomaterial: Influence of sutures and biological adhesives

  • J. M. García Páez
  • A. Carrera
  • E. Jorge
  • I. Millán
  • A. Cordón
  • A. Rocha
  • M. Maestro
  • J. L. Castillo-Olivares
Article

Abstract

We studied the changes in energy consumption of samples of calf pericardium, when joined or not joined by sutures and adhesives, by means of hysteretic cycles. Sixty-four samples were subsequently subjected to tensile stress until rupture. An overlapping suture sewn in the form of a rectangle presented an acceptable mean resistance to rupture of over 10 MPa, although lower than the mean values in an unsutured control series where the mean resistance surpassed 15 MPa. The contribution of an acrylic adhesive to the resistance to rupture was negligible. The sutured samples that were reinforced with adhesives and had not been subjected to hysteretic cycles prior to rupture showed an anisotropic behavior. This behavior appeared to be lost in all the samples that underwent hysteretic cycles. We found an inflection point in the stress/strain curve following the stepwise increase in the load, with a value greater than and proximate to the final load applied. This inflection should be analyzed by means of microscopy. Finally, the mathematical relationship between the energy consumed and the stress applied, the strain or deformation produced and the number of cycles of hysteresis to which the samples were subjected was established as the ultimate objective of this study. The bonding systems provoked a greater consumption of energy, with the greatest consumption corresponding to the first cycle in all the series assayed. An equation relating the energy consumption in a sample to the number of hysteretic cycles to which it was subjected was obtained. Its asymptote on the x-axis indicates the energy consumption for a theoretical number of cycles, making it possible to estimate the durability of the sample.

Keywords

Valve Leaflet Longitudinal Control Acrylic Adhesive Heart Valve Leaflet Hysteretic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Ms. M. Messman for her translation of the text. This work was financed by grant no. MAT 2000/0292 from the Ministerio de Ciencia y Tecnología, Spain.

References

  1. 1.
    M. BUTTERFIELD, D. J. WHEATLEY, D. F. WILLIAMS and J. FISHER, J. Heart Valve Dis. 10 (2001) 105Google Scholar
  2. 2.
    L. M. JENNINGS, A. EL-GATIT, Z. L. NAGY, J. FISHER, P. G. WALKER and K. G. WATTERSON, Ann. Thorac. Surg. 74 (2002) 63CrossRefGoogle Scholar
  3. 3.
    A. GUYTON, in Tratado de fisiología médica (Spanish edition: Interamericana Ed Importécnica, Madrid, 1971, original edition: W. B. Saunders Co.), p. 160Google Scholar
  4. 4.
    M. SACKS, C. J. CHUONG and R. MORE, ASAIO J. 40 (1994) M632CrossRefGoogle Scholar
  5. 5.
    M. GRABENWOGER, F. FITZAL, C. GROSS, D. HUTSCHALA, P. BOCK, P. BRUCKE and E. WOLNER, J. Heart Valve Dis. 9 (2000) 104Google Scholar
  6. 6.
    H. OXENHAM, P. BLOOMFIELD, D. J. WHEATLEY, R. J. LEE, J. CUNNINGHAM and H. C. MILLER, Heart 89 (2003) 715CrossRefGoogle Scholar
  7. 7.
    S. C. CANNEGIETER, F. R. ROSENDAL and E. BRIET, Circulation 89 (1994) 635Google Scholar
  8. 8.
    G. F. O. TYERS, W. R. JAMIESON, I. A. MUNRO, E. GERMANN, L. H. BURR, R. T. MIYAGISHIMA and L. LING, Ann. Thorac. Surg. 60 (1995) S464CrossRefGoogle Scholar
  9. 9.
    P. D. KENT, H. D. TAZELAAR, W. D. EDWARDS and T. A. ORSZULAK, Cardiovasc. Pathol. 7 (1998) 9CrossRefGoogle Scholar
  10. 10.
    W. VONGPATANASIN, L. D. HILLIS and R. A. LANGE, N. Engl. J. Med. 335 (1996) 407CrossRefGoogle Scholar
  11. 11.
    J. A. VON FRAUNHOFER, R. S. STOREY and B. J. MARTESON, Biomaterials 9 (1988) 324CrossRefGoogle Scholar
  12. 12.
    J. A. VON FRAUNHOFER and W. J. SICHINA, Biomaterials 13 (1992) 715CrossRefGoogle Scholar
  13. 13.
    J. M. GARCIA PÁEZ, A. CARRERA, J. V. GARCÍA SESTAFE, E. JORGE HERRERO, R. NAVIDAD, A. CORDÓN and J. L. CASTILLO-OLIVARES, Biomaterials 17 (1996) 1677CrossRefGoogle Scholar
  14. 14.
    A. CARRERA, J. M. GARCÍA PÁEZ, J. V. GARCÍA SESTAFE, E. JORGE HERRERO, J. SALVADOR, A. CORDÓN and J. L. CASTILLO-OLIVARES, J. Biomed. Mater. Res. 39 (1998) 568CrossRefGoogle Scholar
  15. 15.
    E. A. TALMAN and D. R. BOUGHNER, J. Heart Valve Dis. 5 (1996) 152Google Scholar
  16. 16.
    J. M. GARCÍA PÁEZ, A. CARRERA, E. JORGE HERRERO, I. MILLÁN, R. NAVIDAD, I. CANDELA, J. V. GARCÍA SESTAFE and J. L. CASTILLO-OLIVARES, Biomaterials 5 (1994) 172CrossRefGoogle Scholar
  17. 17.
    J. BUTANY and R. LEASK, J. Long Term Eff. Med. Implants 11 (2001) 115Google Scholar
  18. 18.
    M. S. SACKS and F. J. SCHOEN, J. Biomed. Mater. Res. 62 (2002) 359CrossRefGoogle Scholar
  19. 19.
    D. M. BRAILE, M. J. SOARES, D. R. SOUZA, D. A. RAMIREZ, S. SUZIGAN and M. F. GODOY, J. Heart Valve Dis. 7 (1998) 202Google Scholar
  20. 20.
    E. D. HIESTER and M. S. SACKS, J. Biomed. Mater. Res. 39 (1998) 207CrossRefGoogle Scholar
  21. 21.
    E. D. HIESTER and M. S. SACKS, J. Biomed. Mater. Res. 39 (1998) 215CrossRefGoogle Scholar
  22. 22.
    J. M. GARCÍA PÁEZ, E. JORGE, A. CARRERA, I. MILLÁN, A. ROCHA, P. CALERO, A. CORDÓN and J. L. CASTILLO-OLIVARES, Biomaterials 22 (2001) 2731CrossRefGoogle Scholar
  23. 23.
    I. VESELY, J. Long Term Eff. Med. Implants 11 (2001) 137Google Scholar
  24. 24.
    J. C. ELLSMERE, R. A. KHANNA and J. M. LEE, Biomaterials 20 (1999) 1143CrossRefGoogle Scholar
  25. 25.
    A. I. MUNRO, W. R. E. JAMIESON, G. F. O. TYERS and E. GERMANN, Ann. Thorac. Surg. 59 (1995) S470Google Scholar
  26. 26.
    P. ZIOUPOS, J. C. BARBENEL and J. FISHER, Med. Biol. Eng. Comput. 30 (1992) 76CrossRefGoogle Scholar
  27. 27.
    G. BURRIESCI, I. C. HOWARD and E. A. PATTERSON, J. Med. Eng. Technol. 23 (1999) 203CrossRefGoogle Scholar
  28. 28.
    R. E. CLARK, J. Thorac. Cardiovasc. Surg. 66 (1973) 202Google Scholar
  29. 29.
    R. E. CLARK and E. C. FINKE, J. Thorac. Cardiovasc. Surg. 67 (1974) 792Google Scholar
  30. 30.
    G. W. CHRISTIE and J. C. MEDLAND, in Finite Element in Biomechanics, edited by R. H. GALLACHER, B. R. SIMON, P. C. JOHNSON and J. F. GROSS (Chichester: John Wiley & Sons, 1982), p. 153Google Scholar
  31. 31.
    J. M. GARCÍA PÁEZ, E. JORGE, A. CARRERA, A. ROCHA, M. MAESTRO, A. CORDÓN, G. TÉLLEZ, R. BURGOS, J. L. CASTILLO-OLIVARES, J. Mater. Sci. Mat. Med. 13 (2002) 1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. M. García Páez
    • 1
  • A. Carrera
    • 2
  • E. Jorge
    • 1
  • I. Millán
    • 3
  • A. Cordón
    • 2
  • A. Rocha
    • 1
  • M. Maestro
    • 1
  • J. L. Castillo-Olivares
    • 1
  1. 1.Servicio de Cirugía ExperimentalClínica Puerta de HierroMadridSpain
  2. 2.Departamento de Mecánica Estructural y Resistencia de MaterialesEscuela Técnica Superior de Ingenieros IndustrialesMadridSpain
  3. 3.Servicio de BioestadísticaClínica Puerta de HierroMadridSpain

Personalised recommendations