Bonelike®/PLGA hybrid materials for bone regeneration: Preparation route and physicochemical characterisation

  • J. M. Oliveira
  • T. Miyazaki
  • M. A. Lopes
  • C. Ohtsuki
  • J. D. Santos


Bonelike®/PLGA hybrid materials have been developed using γ-MPS as silane-coupling agent between the inorganic and organic phases for controlled drug delivery applications.

Silanization showed to be more effective when cyclohexane was used as a non-polar solvent (nP method) due to a chemical interaction between Bonelike®, and the silane film, while by using a 95/5 (V/V) methanol/water as a polar solvent (P method), a much thinner film was achieved.

Functional groups of PLGA, such as the carbonyl group (C=O), were identified using Raman and FTIR-ATR analysis and therefore these groups may be used to link therapeutic molecules. These novel hybrid materials prepared by combining silanization and post-hybridisation processes are expected to find use in medical applications of bone regeneration and as drug delivery carrier for therapeutic molecules.


Carbonyl Drug Delivery Cyclohexane Hybrid Material Medical Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. AOKI, In “Science and Medical Applications of Hydroxyapatite” (JAAS, 1991).Google Scholar
  2. 2.
    M. J. GLIMCHER, In “Handbook of Physiology, Endocrinology,” edited by R. O. GREEP and E. B. ASTWOOD (American Physiological Society, Washington D.C., 1976).Google Scholar
  3. 3.
    E. C. SHORS and R. E. HOLMES, In “An Introduction to Bioceramics,” edited by L. L. HENCH and J.WILSON (World Scientific, Hong-Kong, 1993) P. 181.Google Scholar
  4. 4.
    J. D. SANTOS, J. C. KNOWLES, R. L. REIS, F. J. MONTEIRO and G. W. HASTINGS, Biomaterials 15 (1994) 5.Google Scholar
  5. 5.
    M. A. LOPES, J. D. SANTOS, F. J. MONTEIRO and J. C. KNOWLES, J. Biomed. Mater. Res. 39 (1998) 244.Google Scholar
  6. 6.
    M. A. LOPES, F. J. MONTEIRO and J. D. SANTOS, J. Biomed. Mater. Res. 48 (1999) 734.Google Scholar
  7. 7.
    M. A. LOPES, F. J. MONTEIRO and J. D. SANTOS, Biomaterials 20 (1999) 2085.Google Scholar
  8. 8.
    M. A. LOPES, R. F. SILVA, F. J. MONTEIRO and J. D. SANTOS, J. Biomed. Mater. Res. 21 (2000) 749.Google Scholar
  9. 9.
    M. A. LOPES, J. C. KNOWLES and J. D. SANTOS, Biomaterials 21 (2000) 1905.Google Scholar
  10. 10.
    L. J. JHA, J. D. SANTOS and J. C. KNOWLES, J. Biomed. Mater. Res. 31 (1996) 481.Google Scholar
  11. 11.
    M. P. FERRAZ, M. H. FERNANDES, J. D. SANTOS and F. J. MONTEIRO, J. Mater. Sci.: Mater. Med. 12 (2001) 629.Google Scholar
  12. 12.
    M. A. LOPES, J. C. KNOWLES, J. D. SANTOS, F. J. MONTEIRO and I. OLSEN, Biomaterials 21 (2000) 1165.Google Scholar
  13. 13.
    M. A. LOPES, J. D. SANTOS, F. J. MONTEIRO, C. OHTSUKI, A. OSAKA, S. KANEKO and H. INOUE, J. Biomed. Mater. Res. 54 (2001) 463.Google Scholar
  14. 14.
    M. WANG, S. DEB and W. BONFIELD, Mater. Lett. 44 (2000) 119.Google Scholar
  15. 15.
    I. GEORGE, P. VIEL, C. BUREAU, J. SUSKI and G. LéCAYON, Surf. Interf. Anal. 24 (1996) 774.Google Scholar
  16. 16.
    Q. LIU, J. R. DE WIJN, K. DE GROOT and C. A. VAN BLITTERWIJK, Biomaterials 19 (1998) 1067.Google Scholar
  17. 17.
    M. ARA, M. WATANABE and Y. IMAI, Biomaterials 23 (2002) 2479.Google Scholar
  18. 18.
    C. M. AGRAWAL and R. B. RAY, J. Biomed. Mater. Res. 55 (2001) 141.Google Scholar
  19. 19.
    U. ARNOLD, K. LINDENHAYN and C. PERKA, Biomaterials 23 (2002) 2303.Google Scholar
  20. 20.
    S. C. RIZZI, D. J. HEATH, A. G. A. COOMBES, N. BOCK, M. TEXTOR and S. DOWNES, J. Biomed. Mater. Res. 55 (2001) 475.Google Scholar
  21. 21.
    C. G. SIMON JR., C. A. KHATRI, S. A. WIGHT and F. W. WANG, J. Orthop. Res. 20 (2002) 473.Google Scholar
  22. 22.
    A. G. MIKOS and J. S. TEMENOFF, EJB Electr. J. Biotechn. 3(2) (2000).Google Scholar
  23. 23.
    C. T. LAURENCIN, M. A. ATTAWIA, L. Q. LU, M. D. BORDEN, H. H. LU, W. J. GORUM and J. R. LIEBERMAN, Biomaterials 22 (2001) 1271.Google Scholar
  24. 24.
    M. TAKENAGA, Y. YAMAGUCHI, A. KITAGAWA, Y. OGAWA, Y. MIZUSHIMA and R. IGARASHI, J. Contr. Rel. 79 (2002) 81.Google Scholar
  25. 25.
    A. M. P. DUPRAZ, J. R. DE WIJN, S. A. T. VAN DE MEER and K. DE GROOT, J. Biomed. Mater. Res. 30 (1996) 231.Google Scholar
  26. 26.
    R. P. SHELDON, Appl. Sci. Publ. 1 (1982) 1.Google Scholar
  27. 27.
    P. X. ZHU, M. ISHIKAWA, W. S. SEO, A. HOZUMI, Y. YOKOGAWA and K. KOUMOTO, J. Biomed. Mater. Res. 59 (2002) 294.Google Scholar
  28. 28.
    T. HOOSHMAND, R. VAN NOORT and A. KESHVAD, Dent. Mater. 18 (2002) 179.Google Scholar
  29. 29.
    B. A. M. VENHOVEN, A. J. DE GEE, A. WERNER and C. L. DAVIDSON, Biomaterials 15 (1994) 1152.Google Scholar
  30. 30.
    S. A. YERBY, A. F. PAAL, P. M. YOUNG, G. S. BEAUPRé, K. L. OHASHI and S. B. GOODMAN, J. Biomed. Mater. Res. 49 (2000) 127.Google Scholar
  31. 31.
    M. WANG and W. BONFIELD, Biomaterials 22 (2001) 1311.Google Scholar
  32. 32.
    C. SANTOS, Z. B. LUKLINSKA, R. L. CLARKE and K. W. M. DAVY, J. Mater. Sci.: Mat. Med. 12 (2001) 565.Google Scholar
  33. 33.
  34. 34.
    A. AFONSO, J. D. SANTOS, M. VASCONCELOS, R. BRANCO and J. CAVALHEIRO, J. Mater. Sci.: Mater. Med. 7 (1996) 507.Google Scholar
  35. 35.
    R. HOFFMAN, J. G. F. WESTHEIM, I. POUWEL, T. FRANSEN and P. J. GELLINGS, Surf. Interf. Anal. 24 (1996) 1.Google Scholar
  36. 36.
    A. N. RIDER and D. R. ARNOTT, Surf. Interf. Anal. 24 (1996) 583.Google Scholar
  37. 37.
    S. EUFINGER, W. J. VAN OOIJ and K. D. CONNERS, Surf. Interf. Anal. 24 (1996) 841.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. M. Oliveira
    • 1
    • 2
  • T. Miyazaki
    • 3
  • M. A. Lopes
    • 1
    • 2
  • C. Ohtsuki
    • 3
  • J. D. Santos
    • 1
    • 2
  1. 1.INEB—Instituto de Engenharia Biomédica, Laboratório de BiomateriaisPortugal
  2. 2.FEUP—Faculdade de Engenharia da Universidade do Porto, DEMMPortugal
  3. 3.NAIST—Nara Institute of Science and TechnologyIkomaJapan

Personalised recommendations