Skip to main content
Log in

Characterization of trypsin immobilized on the functionable alkylthiolate self-assembled monolayers: A preliminary application for trypsin digestion chip on protein identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Self-assembled monolayers (SAMs) on coinage metal provide versatile modeling systems for studies of interfacial electron transfer, biological interactions, molecular recognition and other interfacial phenomena. Recently the bonding of enzyme to SAMs of alkanethiols onto Au electrode surfaces was exploited to produce a bio-sensing system. In this work, the attachment of trypsin to a SAMs surface of 11-mercaptoundecanoic acid was achieved using water soluble N-ethyl-N ′-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide as coupling agent. The thickness of SAMs was determined by optical ellipsometer; contact angles of the modified Au surfaces were measured in air using a goniometer. The Second Harmony Generation data displays the last few percents of the alkylthiol molecules adsorbed and produced the complete monolayer by inducing the transition from a high number of gauche defects to an all-trans conformation. Using X-ray Photoelectron Spectroscopy (XPS) and Fourier-Transformed Infrared Reflection-Absorption and Attenuated Total Reflection Spectroscopes (FTIR-RAS and ATR), we examined the chemical structures of samples with different treatments. By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we demonstrated the digestion of bovine serum albumin (BSA) on the trypsin-immobilized SAMs surface.

Experimental results have revealed that the XPS C1s core levels at 286.3 and 286.5 eV (Amine bond), 288.1 eV (Amide bond) and 289.3 eV (Carboxylic acid) illustrate the immobilization of trypsin. These data were also in good agreement with FTIR-ATR spectra for the peaks valued at 1659.4 cm− 1 (Amide I) and 1546.6 cm− 1 (Amide II). Using MALDI-TOF MS observations, analytical results have demonstrated the BSA digestion of the immobilized trypsin on the functionalized SAMs surface. For such surfaces, BSA was digested on the trypsin-immobilized SAMs surface, which shows the enzyme digestion ability of the immobilized trypsin. The terminal groups of the SAMs structure can be further functionalized with biomolecules or antibodies to develop surface-base diagnostics, biosensors, or biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. C. HORNE and G. J. BLANCHARD, J. Am. Chem. Soc. 120 (1998) 6336.

    Google Scholar 

  2. F. MORHARD, J. SCHUMACHER, A. LENENBACH, T. WILHELM, R. DAHINT, M. GRUNZE and D. S. EVERHART, Proc. - Electrochem. Soc. 97(19) (1997) 1058.

    Google Scholar 

  3. K. BIERBAUM, M. GRUNZE, A. BASKI, L. F. CHI, W. SCHREPP and H. FUCHS, Langmuir 11 (1995) 2143.

    Google Scholar 

  4. A. SCHERTEL, C. WOLL and M. GRUNZE, J. Phys. IV. 7 (1997) 537.

    Google Scholar 

  5. C. YAN, M. ZHARNIKOV, A. GOELZHAEUSER and M. GRUNZE, Langmuir 16 (2000) 6208.

    Google Scholar 

  6. H. J. HIMMEL, K. WEISS, B. JAEGER, O. DANNENBERGER, M. GRUNZE and C. WOELL, Langmuir 13 (1997) 4943.

    Google Scholar 

  7. C. JUNG, O. DANNENBERGER, Y. XU, M. BUCK and M. GRUNZE, Langmuir 14 (1998) 1103.

    Google Scholar 

  8. R. G. NUZZO and D. L. ALLARA, J. Am. Chem. Soc. 105 (1983) 4481.

    Google Scholar 

  9. C. W. SHEEN, J. X. SHI, J. MARTENSSON, A. N. PARIKH and D. L. ALLARA, J. Am. Chem. Soc. 114 (1992) 1514.

    Google Scholar 

  10. Y. GU, Z. LIN, R. A. BUTERA, V. S. SMENTKOWSKI and D. H. WALDECK, Langmuir 11 (1995) 1849.

    Google Scholar 

  11. T. J. GARDNER, C. D. FRISBIE and M. S. WRIGHTON, J. Am. Chem. Soc. 117 (1995) 6927.

    Google Scholar 

  12. C. D. BAIN, E. B. TROUGHTON, Y. TAO, J. EVALL, G. M. WHITESIDES and R. G. NUZZO, J. Am. Chem. Soc. 111 (1989) 321.

    Google Scholar 

  13. A. ULMAN, in “An Introduction to Ultrathin Origanic Films” (Academic Press, San Diego, 1991).

    Google Scholar 

  14. L. H. DUBOIS and R. G. NUZZO, Annu. Rev. Phy. Chem. 43 (1992) 437.

    Google Scholar 

  15. A. ULMAN, Chem. Rev. 96 (1996) 1533.

    Google Scholar 

  16. P. E. LAIBINIS, R. G. NUZZO and G. M. WHITESIDES, J. Phys. Chem. 96 (1992) 5097.

    Google Scholar 

  17. S. A. JOYCE, R. C. THOMAS, J. E. HOUSTON, T. A. MICHALSKE and R. M. CROOKS, Phys. Rev. Lett. 68 (1992) 2790.

    Google Scholar 

  18. J. J. GOODING and D. B. HIBBERT, Trends in Analytical Chemistry 18 (1999) 525.

    Google Scholar 

  19. C. ERDELEN, L. HäUSSLING, R. NAUMANN, H. RINGSDORF, H. WOLF, J. YANG, M. LILEY, J. SPINKE and W. KNOLL, Langmuir 10 (1994) 1246.

    Google Scholar 

  20. P. E. LAIBINIS and G. M. WHITESIDES, J. Am. Chem. Soc. 114 (1992) 9022.

    Google Scholar 

  21. D. G. BUERK, in “Biosensor: Theory and Applications” (Tech. Pub. Comp. Inc, 1993).

  22. I. K. KANG, B. K. KWON, J. H. LEE and H. B. LEE, Biomaterials 14 (1993) 787.

    Google Scholar 

  23. Y. C. TYAN, J. D. LIAO, R. KLAUSER, I. D. WU and C. C. WENG, Biomaterials 23 (2002) 65.

    Google Scholar 

  24. O. DANNENBERGER, M. BUCK and M. GRUNZE, J. Phys. Chem. B. 103 (1999) 2202.

    Google Scholar 

  25. B. L. FREY and R. M. CORN, Anal. Chem. l 68 (1996) 3187.

    Google Scholar 

  26. E. L. SMITH, C. A. ALVES, J. W. ANDEREGG, M. D. PORTER and L. M. SIPERKO, Langmuir 8 (1992) 2707.

    Google Scholar 

  27. L. SUN, R. M. CROOKS and A. J. RICCO, Langmuir 9 (1993) 1775.

    Google Scholar 

  28. Y. MIURA, S. KIMURA, Y. IMANISHI and J. UMEMURA, Langmuir 15 (1999) 1155.

    Google Scholar 

  29. C. J. DELDEN, J. P. LENS, R. P. H. KOOYMAN, G. H. M. ENGBERS and J. FEIJEN, Biomaterials 18 (1997) 845.

    Google Scholar 

  30. A. J. KUIJPERS, P. B. WACHEM, M. J. A. LUYN, L. A. BROUWER, G. H. M. ENGBERS, J. KRIJGSVELD, S. A. J. ZAAT, J. DANKERT and J. FEIJEN, Biomaterials 21 (2000) 1763.

    Google Scholar 

  31. M. LESTELIUS, B. LIEDBERG and P. TENGVALL, Langmuir 13 (1997) 5900.

    Google Scholar 

  32. A. R. NOBLE-LUGINBUHI and R. G. NUZZO, Langmuir 17 (2001) 3937.

    Google Scholar 

  33. C. E. D. CHIDSEY and D. N. LOIACONO, Langmuir 6 (1990) 682.

    CAS  Google Scholar 

  34. P. E. LAIBINIS, G. M. WHITESIDES, D. L. ALLARA, Y. T. TAO, A. N. PARIKH and R. G. NUZZO, J. Am. Chem. Soc. 113 (1991) 7152.

    Google Scholar 

  35. Y. ITO, M. KAJIHARA and Y. IMANISHI, J. Biomed. Mater. Res. 25 (1991) 1325.

    Google Scholar 

  36. Y. C. TYAN, J. D. LIAO, S. P. LIN and C. C. CHEN, J. Biomed. Mater. Res. 67A (2003) 1033.

    Google Scholar 

  37. J. F. MOULDER, W. F. STICKLE, P. E. SOBOL and K. D. BOMBEN, in “Handbook of X-ray Photoelectron Spectroscopy” (Physical Electronics, Inc. Minnesota, 1995).

    Google Scholar 

  38. G. BEAMSON and D. BRIGGS, in “High Resolution XPS of Organic Polymers. The Scienta ESCA300 Database” (Wiley & Sons Inc., New York, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YU-Chang Tyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyan, YC., Liao, JD., Jong, SB. et al. Characterization of trypsin immobilized on the functionable alkylthiolate self-assembled monolayers: A preliminary application for trypsin digestion chip on protein identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mater Sci: Mater Med 16, 135–142 (2005). https://doi.org/10.1007/s10856-005-5987-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-5987-6

Keywords

Navigation