Journal of Materials Science: Materials in Medicine

, Volume 16, Issue 11, pp 1045–1050 | Cite as

Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method

  • M. M. Pereira
  • J. R. Jones
  • R. L. Orefice
  • L. L. Hench


A new class of materials based on inorganic and organic species combined at a nanoscale level has received large attention recently. In this work the idea of producing hybrid materials with controllable properties is applied to obtain foams to be used as scaffolds for tissue engineering. Hybrids were synthesized by reacting poly(vinyl alcohol) in acidic solution with tetraethylorthosilicate. The inorganic phase was also modified by incorporating a calcium compound. Hydrated calcium chloride was used as precursor. A surfactant was added and a foam was produced by vigorous agitation, which was cast just before the gel point. Hydrofluoric acid solution was added in order to catalyze the gelation. The foamed hybrids were aged at 40 C and vacuum dried at 40 C. The hybrid foams were analyzed by Scanning Electron Microscopy, Mercury Porosimetry, Nitrogen Adsorption, X-ray Diffraction and Infra-red Spectroscopy. The mechanical behavior was evaluated by compression tests. The foams obtained had a high porosity varying from 60 to 90% and the macropore diameter ranged from 30 to 500 μ m. The modal macropore diameter varied with the inorganic phase composition and with the polymer content in the hybrid. The surface area and mesopore volume decreased as polymer concentration increased in the hybrids. The strain at fracture of the hybrid foams was substantially greater than pure gel-glass foams.


Surfactant Foam Compression Test Calcium Chloride Hydrofluoric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. J. BREKKE and M. J. TOTHMJ, J. Biomed. Mater. Res. 43 (1998) 380.CrossRefGoogle Scholar
  2. 2.
    A. H. REDDI, Tissue Engng. 6 (2000) 351.Google Scholar
  3. 3.
    R. A. J. FELICITY and R. O. C. OREFFO, Biochem. Biophys. Res. Commun. 292 (2002) 1.Google Scholar
  4. 4.
    S. H. LI, J. R. DE WIJN, P. LAYROLLE and K. DE GROOT, J. Biomed. Mater. Res. 61 (2002) 109.CrossRefGoogle Scholar
  5. 5.
    J. DONG, T. UEMURA, Y. SHIRASAKI and T. TATEISHI, Biomaterials 23 (2002) 4493.CrossRefGoogle Scholar
  6. 6.
    P. SEPULVEDA, J. R. JONES and L. L. HENCH, J. Biomed. Mater. Res. 59 (2002) 340.CrossRefGoogle Scholar
  7. 7.
    F. MONCHAU, A. LEFEVRE, M. DESCAMPS, A. BELQUIN-MYRDYCS, P. LAFFARGUE and H. F. HILDEBRAND, Biomol. Engng. 19 (2002) 143.Google Scholar
  8. 8.
    L. L. HENCH, J. M. POLAK, I. D. XYNOS and L. D. K BUTTERY, Mat. Res. Inn. 3 (2000) 313.Google Scholar
  9. 9.
    I. D. XYNOS, A. J. EDGAR, L. D. K. BUTTERY, L. L. HENCH and J. M. POLAK, Biochem. Biophys. Res. Comm. 276 (2000) 461.CrossRefGoogle Scholar
  10. 10.
    D. M. REFFITT, N. OGSTON, R. JUGDAOHSINGH, H. F. J. CHEUNG, B. A. J. EVANS, R. P. H. THOMPSON, J. J. POWELL and G. N. HAMPSON, Bone 32 (2003) 127.CrossRefGoogle Scholar
  11. 11.
    C. M. BOTELHO, R. A. BROOKS, S. M. BEST, M. A. LOPES, J. D. SANTOS, N. RUSHON and W. BONFIELD, Key Engng. Mater. 254–256 (2004) 845.Google Scholar
  12. 12.
    N. PATEL, S. M. BEST, W. BONFIELD, I. R. GIBSON, K. A. HING, A. DAMIEN and P. A. REVELL, J. Biomed. Mater. Res. Mater Med. 13 (2002) 1199.Google Scholar
  13. 13.
    C. M. AGRAWAL and R. B. RAY, J. Biomed. Mater. Res. 55 (2001) 141.CrossRefGoogle Scholar
  14. 14.
    J. M. TABOAS, R. D. MADDOX, P. H. KREBSBACH and S. J. HOLLISTER, Biomaterials 24 (2003) 181.CrossRefGoogle Scholar
  15. 15.
    J. A. ROETHER, A. R. BOCCACCINI, L. L. HENCH, V. MAQUET, S. GAUTIER and R. JÉROME, ibid. 23 (2002) 3871.CrossRefGoogle Scholar
  16. 16.
    A. B. BRENNAN and T. M. MILLER, in “Kirk-Othmer Encyclopedia of Chemical Technology” (John Wiley & Sons Inc., 1994) p. 644.Google Scholar
  17. 17.
    M. KAMITAKAHARA, M. KAWASHITA and N. MIYATA, J. Sol-Gel Sci. Tech. 21 (2001) 75.CrossRefGoogle Scholar
  18. 18.
    P. BOSCH, F. DEL MONTE, J. L. MATEO and D. LEVY, J. Polym. Sci. A Polym. Chem. 34 (1996) 3289.CrossRefGoogle Scholar
  19. 19.
    Z. H. HUANG and K. Y. QIU, Polymer 38 (1997) 521.Google Scholar
  20. 20.
    M. B. COELHO, I. R. SOARES, H. S. MANSUR and M. M. PEREIRA, Key Engng. Mater. 240–242 (2003) 257.Google Scholar
  21. 21.
    J. R. JONES and L. L. HENCH, J. Mater. Sci. 38 (2003) 3783.CrossRefGoogle Scholar
  22. 22.
    S. H. RHEE, J. Y. CHOI and H. M. KIM, Biomaterials 23 (2002) 4915.Google Scholar
  23. 23.
    J. M. YANG, C. S. LU, Y. G. HSU and C. H. SHIH, J. Biomed. Mater. Res. 38 (1997) 143.Google Scholar
  24. 24.
    Q. CHEN, N. MIYATA, T. KOKUBO and T. NAKAMURA, ibid. 51 (2000) 605.Google Scholar
  25. 25.
    P. BOSCH, F. DEL MONTE, J. L. MATEO and D. LEVY, J. Polym. Sci. A Polym. Chem. 34 (1996) 3289.CrossRefGoogle Scholar
  26. 26.
    Z. H. HUANG and K. Y. QIU, Polymer 38 (1997) 521.Google Scholar
  27. 27.
    P. HAJJI, L. DAVID and J. F. GERARD, J. Polym. Sci. B: Polym. Phys. 37 (1999) 3172.CrossRefGoogle Scholar
  28. 28.
    F. SUZUKI, K. ONOZATO and Y. KUROKAWA, J. Appl. Pol. Sci. 39 (1990) 371.CrossRefGoogle Scholar
  29. 29.
    R. VON KLITZING and H. J. MULLER, Curr. Opin. Coll. Interf. Sci. 7 (2002) 42.Google Scholar
  30. 30.
    R. M. ALMEIDA and C. G. PANTANO, J. Appl. Phys. 68 (1990) 4225.CrossRefGoogle Scholar
  31. 31.
    D. A. SKOOG and J. J. LEARY, “Principles of Instrumental Analysis” (Saunders College Publishing, 1992).Google Scholar
  32. 32.
    D. KLEE and H. HÖOCKER, Adv. Polym. Sci. 149 (2000) 1.Google Scholar
  33. 33.
    J. S. REED, “Principles of Ceramic Processing” (John Wiley & Sons, 1995).Google Scholar
  34. 34.
    M. M. PEREIRA, N. AL-SAFFAR, J. SELVAKUMARAN and L. L. HENCH, Key Eng. Mater. 284–286 (2005) 589.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. M. Pereira
    • 1
    • 2
    • 3
  • J. R. Jones
    • 1
  • R. L. Orefice
    • 2
  • L. L. Hench
    • 1
  1. 1.Department of MaterialsImperial College LondonUK
  2. 2.Metallurgical and Materials Eng. DepartmentFederal University of Minas GeraisBrazil
  3. 3.Departamento de Eng. Metalurgica e de MateriaisUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations