Advertisement

Macroporous calcium phosphate glass-ceramic prepared by two-step pressing technique and using sucrose as a pore former

  • Cong Wang
  • Toshihiro Kasuga
  • Masayuki Nogami
Article

Abstract

Macroporous calcium phosphate glass-ceramic with an initial glass composition of 60CaO ⋅ 30P2O5⋅ 3TiO2⋅ 7Na2O in mol% was successfully prepared by sintering the mixture compact consisting of calcium phosphate glass and sucrose powders, which was formed using a two-step pressing technique. After burning off the sucrose phase, a 3D interconnected macroporous structure was formed in the sintered body, in which the skeleton consisting of the calcium phosphate glass-ceramic (including β -calcium pyrophosphate and β -tricalcium phosphate as the crystalline phases) was transformed from the initial glass during the sintering. The macropores with several hundred microns in diameter and the large interconnection size (∼ 100 μ m), which result from the controllably large-sized sucrose particles and the hot-pressing at a little higher temperature than the sucrose’s melting point, are believed to meet the requirements for cell adhesion and bone tissue regeneration well. Moreover, in vitro dissolution behavior study indicates that the calcium phosphate glass-ceramic is soluble to an acetic acid solution of pH 5–7. These, together with the simplicity and feasibility of the innovative fabrication method itself, show that the formed porous glass-ceramic has a promising potential for application to a scaffold for bone tissue engineering.

Keywords

Calcium Phosphate Phosphate Glass Acetic Acid Solution Bone Tissue Engineering Tricalcium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. HENCH and J. WILSON, “An Introduction to Bioceramics” (World Scientific, London, U.K., 1993).Google Scholar
  2. 2.
    L. L. HENCH, J. Am. Ceram. Soc. 74(7) (1991) 1487.CrossRefGoogle Scholar
  3. 3.
    H. DE GROOT, Ceram. Int. 19 (1993) 363.CrossRefGoogle Scholar
  4. 4.
    C. A. VACANTI and L. J. BONASSAR, Clin. Orthop. 367(Suppl) (1999) S375.CrossRefPubMedGoogle Scholar
  5. 5.
    J. J. KLAWITTER and S. F. HULBERT, J. Biomed. Mater. Res. 5 (1971) 161.CrossRefGoogle Scholar
  6. 6.
    A. RAVAGLIOLI and A. KREJEWSKI, “Bioceramics: Materials, Properties, Applications” (Chapman and Hall, London, U.K., 1992).Google Scholar
  7. 7.
    J. H. KHNE, R. BARTL, B. FRISH, C. HANMER, V. JANSSON and M. ZIMMER, Acta Orthop. Scand. 65 (1994) 246.PubMedGoogle Scholar
  8. 8.
    P. S. EGGLI, W. MULLER and R. K. SCHENK, Clin. Orthop. Rel. Res. 232 (1998) 127.Google Scholar
  9. 9.
    R. E. HOLMES, V. MOONEY, R. BUCHOLZ and A. TENCER, ibid. 188 (1984) 252.Google Scholar
  10. 10.
    R. W. BUCHOLZ, A. CARLTON and R. E. HOLMES, Orthop. Clin. North Am. 18 (1987) 323.PubMedGoogle Scholar
  11. 11.
    P. A. HILL, Bone Remod., Br. J. Orthod. 25 (1998) 101.CrossRefPubMedGoogle Scholar
  12. 12.
    P. SEPULVEDA, Am. Ceram. Soc. Bull. 76 (1997) 61.Google Scholar
  13. 13.
    J. S. WOYANSKY, C. E. SCOTT and W. P. MINNEAR, ibid. 71 (1992) 1674.Google Scholar
  14. 14.
    L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487.CrossRefGoogle Scholar
  15. 15.
    O. LYCKFELDT and J. M. F. FERREIRA, J. Eur. Ceram. Soc. 18 (1998) 131.CrossRefGoogle Scholar
  16. 16.
    N. O. ENGIN and A. C. TAS, ibid. 19 (1999) 2569.CrossRefGoogle Scholar
  17. 17.
    Idem., J. Am. Ceram. Soc. 83 (2000) 1581.Google Scholar
  18. 18.
    J. TIAN and J. TIAN, J. Mater. Sci. 12 (2001) 3061.CrossRefGoogle Scholar
  19. 19.
    Y. ZHANG and M. ZHANG, J. Biomed. Mater. Res. 61 (2002) 1.CrossRefPubMedGoogle Scholar
  20. 20.
    J. LUYTEN, J. COOYMANS, A. DE WILDE and I. THIJS, Key Eng. Mater. 206–213 (2002) 1937.Google Scholar
  21. 21.
    F. F. LANGE and K. T. MILLER, Adv. Ceram. Mater. 2 (1987) 827.Google Scholar
  22. 22.
    S. J. POWELL and J. R. G. EVANS, Mater. Manuf. Proc. 4 (1995) 757.Google Scholar
  23. 23.
    T. KASUGA and Y. ABE, J. Non-Cryst. Solids 243 (1999) 70.CrossRefGoogle Scholar
  24. 24.
    T. KASUGA, M. SAWADA, M. NOGAMI and Y. ABE, Biomaterials 20 (1999) 1415.CrossRefPubMedGoogle Scholar
  25. 25.
    T. KASUGA and Y. ABE, J. Mater. Res. 13 (1998) 3357.Google Scholar
  26. 26.
    T. KASUGA, M. TERADA and M. NOGAMI, ibid. 16 (2001) 876.Google Scholar
  27. 27.
    T. KASUGA, M. NOGAMI and M. NIINOMI, J. Mater. Sci. Lett. 20 (2001) 1249.CrossRefGoogle Scholar
  28. 28.
    T. KASUGA, T. FUJIMOTO and M. NOGAMI, J. Ceram. Soc. Jpn. 111(9) (2003) 633.CrossRefGoogle Scholar
  29. 29.
    Y. DOI, T. SHIBUTANI, Y. MORIWAKI, T. KAJIMOTO and Y. IWAYAMA, J. Biomed. Mater. Res. 6 (1972) 347.CrossRefPubMedGoogle Scholar
  30. 30.
    S. F. HULBERT, J. S. MORRISON and J. J. KLAWITTER, ibid. 39 (1998) 603.CrossRefPubMedGoogle Scholar
  31. 31.
    T. J. FLATLEY, K. L. LYNCH and M. BENSON, Clin. Orthop. 179 (1983) 246.PubMedGoogle Scholar
  32. 32.
    P. SEPULVEDA, F. S. ORTEGA, M. D. M. INNOCENTINI and V. C. PANDOLFELLI, J. Am. Ceram. Soc. 83 (2000) 3021.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Cong Wang
    • 1
  • Toshihiro Kasuga
    • 1
  • Masayuki Nogami
    • 1
  1. 1.Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations