Advertisement

Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys

  • S. Nag
  • R. Banerjee
  • J. Stechschulte
  • H. L. Fraser
Article

Abstract

The microstructural evolution and attendant strengthening mechanisms in two biocompatible alloy systems, the binary Ti-15Mo and the quaternary Ti-13Mo-7Zr-3Fe (TMZF), have been compared and contrasted in this paper. In the homogenized condition, while the Ti-15Mo alloy exhibited a single phase microstructure consisting of large β grains, the TMZF alloy exhibited a microstructure consisting primarily of a β matrix with grain boundary α precipitates and a low volume fraction of intra-granular α precipitates. On ageing the homogenized alloys at 600 C for 4 h, both alloys exhibited the precipitation of refined scale secondary α precipitates homogeneously in the β matrix. However, while the hardness of the TMZF alloy marginally increased, that of the Ti-15Mo alloy decreased substantially as a result of the ageing treatment. In order to understand this difference in the mechanical properties after ageing, TEM studies have been carried out on both alloys in the homogenized and homogenized plus aged conditions. The results indicate that the ω precipitates dissolve on ageing in case of the Ti-15Mo alloy, consequently leading to a substantial decrease in the hardness. In contrast, the ω precipitates do not dissolve on ageing in the TMZF alloy and the precipitation of the fine scale secondary α leads to increased hardness.

Keywords

Precipitation Microstructure Single Phase Microstructural Evolution Aged Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. LONG and H. J. RACK, Biomater. 19 (1998) 1621.CrossRefGoogle Scholar
  2. 2.
    E. W. LOWMAN, J. Amer. Med. Acad. 157 (1955) 487.Google Scholar
  3. 3.
    K. WANG, Mater. Sci. and Eng. A213 (1996) 134.CrossRefGoogle Scholar
  4. 4.
    C. M. LEE, W. F. HO, C. P. JU and J. H. CHERN LIN, J. Mater. Sci. Mater. Med. 13 (2002) 695.CrossRefPubMedGoogle Scholar
  5. 5.
    M. F. SEMLITSCH, H. WEBER, R. M. STREICHER and R. SCHÖN, Biomater. 13(11) (1992) 781.CrossRefGoogle Scholar
  6. 6.
    K.-H. BOROWY and K.-H. KRAMMER, “On the Properties of a New Titanium Alloy (Ti-5Al-2.5Fe) as Implant Material,” Titanium 84’: Science and Technology, Vol. 2 Munich, Deutsche Gesellschaft Für Metallkunde EV (1985) p. 1381.Google Scholar
  7. 7.
    S. G. STEINEMANN, “Corrosion of Surgical Implants–-in vivo and in vitro Tests,” Evaluation of Biomaterials, edited by G. D. Winter, J. L. Leray and K. de Groot (Wiley, New York, 1980).Google Scholar
  8. 8.
    S. G. STEINEMANN, “Corrosion of Titanium and Titanium Alloys for Surgical Implants,” Titanium 84’: Science and Technology, Vol. 2 Munich, Deutsche Gesellschaft Für Metallkunde EV, (1985) p. 1373.Google Scholar
  9. 9.
    S. RAO, T. USHIDA, T. TATEISHI, Y. OKAZAKI and S. ASAO, Bio-med. Mater. Eng. 6 (1996) 79.Google Scholar
  10. 10.
    P. R. WALKER, J. LEBLANC and M. SIKORSKA, Biochemistry 28 (1990) 3911.CrossRefGoogle Scholar
  11. 11.
    E. CHEAL, M. SPECTOR and W. HAYES, J. Orthop. Res. 10 (1992) 405.CrossRefPubMedGoogle Scholar
  12. 12.
    P. PRENDERGAST and D. TAYLOR, J. Biomed. Eng. 12(5) (1990) 379.PubMedGoogle Scholar
  13. 13.
    W. F. HO, C. P. JU and J. H. CHERN LIN, Biomater. 20 (1999) 2115.CrossRefGoogle Scholar
  14. 14.
    K. WANG, L. GUSTAVSON and J. DUMBLETON, “The Characterization of Ti-12Mo-6Zr-2Fe. A New Biocompatible Titanium Alloy Developed for Surgical Implants,” Beta Titanium in the 1990’s (The Mineral, Metals and Materials Society, Warrendale, Pennsylvania, 1993) p. 2697.Google Scholar
  15. 15.
    S. G. STEINEMANN, P.-A. MÄUSLI, S. SZMUKLER-MONCLER, M. SEMLITSCH, O. POHLER, H. -E HINTERMANN and S.-M. PERREN, “Beta-Titanium Alloy for Surgical Implants,” Beta Titanium in the 1990’s (The Mineral, Metals and Materials Society, Warrendale, Pennsylvania, 1993) p. 2689.Google Scholar
  16. 16.
    J. C. FANNING, “Properties and Processing of a New Metastable Beta Titanium Alloy for Surgical Implant Applications: TIMETALTM 21SRx,” Titanium 95’: Science and Technology (1996) p. 1800.Google Scholar
  17. 17.
    A. K. MISHRA, J. A. DAVIDSON, P. KOVACS and R. A. POGGIE, “Ti-13Nb-13Zr: A New Low Modulus, High Strength, Corrosion Resistant Near-Beta Alloy for Orthopaedic Implants,” Beta Titanium in the 1990’s (The Mineral, Metals and Materials Society, Warrendale, Pennsylvania, 1993) p. 61.Google Scholar
  18. 18.
    T. A. AHMED, M. LONG, J. SILVERSTRI, C. RUIZ and H. J. RACK, “A New Low Modulus Biocompatible Titanium Alloy,” Titanium 95’: Science and Technology, 1996) p. 1760.Google Scholar
  19. 19.
    K. WANG, Mater. Sci. Eng. A 213 (1996) 134.CrossRefGoogle Scholar
  20. 20.
    A. K. BOWEN, Scripta Metall. 5 (1971) 709.CrossRefGoogle Scholar
  21. 21.
    A. K. BOWEN, “On the Strengthening of Metastable β-Titanium Alloy by ω- an α-Precipitation,” Titanium’80 Science and Technology, in Proceedings of the Fourth International Conference on Titanium, Kyoto, Japan, 1980) p. 1317.Google Scholar
  22. 22.
    J. C. WILLIAMS, B. S. HICKMAN and D. H. LESLIE, Metall. Trans. 2 (1971) 477.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Nag
    • 1
  • R. Banerjee
    • 1
  • J. Stechschulte
    • 1
    • 2
  • H. L. Fraser
    • 1
  1. 1.Center for the Accelerated Maturation of Materials, Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Materials Science and EngineeringCornell UniversityIthacaUSA

Personalised recommendations