Skip to main content
Log in

Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polyetheretherketone (PEEK) is a synthetic polymer with suitable biomechanical and stable chemical properties, which make it attractive for use as an endoprothetic material and for ligamentous replacement. However, chemical surface inertness does not account for a good interfacial biocompatibility, and PEEK requires a surface modification prior to its application in vivo.

In the course of this experimental study we analyzed the influence of plasma treatment of PEEK surfaces on the cell proliferation and differentiation of primary fibroblasts and osteoblasts. Further we examined the possibility of inducing microstructured cell growth on a surface with plasma-induced chemical micropatterning.

We were able to demonstrate that the surface treatment of PEEK with a low-temperature plasma has significant effects on the proliferation of fibroblasts. Depending on the surface treatment, the proliferation rate can either be stimulated or suppressed. The behavior of the osteoblasts was examined by evaluating differentiation parameters.

By detection of alkaline phosphatase, collagen I, and mineralized extracellular matrix as parameters for osteoblastic differentiation, the examined materials showed results comparable to commercially available polymer cell culture materials such as tissue culture polystyrene (TCPS). Further microstructured cell growth was produced successfully on micropatterned PEEK foils, which could be a future tool for bioartificial systems applying the methods of tissue engineering.

These results show that chemically inert materials such as PEEK may be modified specifically through the methods of plasma technology in order to improve biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. A. HORBETT, in “Proteins at Interfaces,” edited by T. A. Horbett and T. A. Brash (American Chemical Society, Washington DC, 1987).

    Google Scholar 

  2. B. D. RATNER, in “Comprehensive Polymer Science,” edited by G. Allen and J. C. Bevington (Pergamon Press, New York, 1989) p. 201.

    Google Scholar 

  3. R. THULL, Orthopade 32 (2003) 51.

    Article  CAS  PubMed  Google Scholar 

  4. B. D. RATNER, in “Surface Modification of Polymeric Biomaterials,” edited by B. D. Ratner and D. G. Castner (Plenum Press, New York, 1997) p. 35.

    Google Scholar 

  5. A. BRUNHOLD, F. KLEINERT, R. SCHNABEL and S. MARINOW, Lackiertechnik 51 (1997) 37.

    Google Scholar 

  6. D. KLEE and H. HÖCKER, Spektrum der Wissenschaft 6 (1995) 90.

    Google Scholar 

  7. R. D’AGOSTINO, Academic Press, 1990.

  8. D. M. MANOS and D. L. FLAMM, Academic Press, 1986.

  9. C. MORRISON, R. MACNAIR, C. MAcDONALD, A. WYKMAN, I. GOLDIE and M. H. GRANT, Biomaterials 16 (1995) 987.

    Article  CAS  PubMed  Google Scholar 

  10. D. F. WILLIAMS and A. McNAMARA, J. Mater. Sci. Lett. 6 (1987) 188.

    Article  CAS  Google Scholar 

  11. J. A. BRYDSON (ed.) “Aromatic Polyetherketones” Butterworths London, 1989).

  12. C. P. SMITH, Swiss Plastics 3 (1981) 37.

    Google Scholar 

  13. M. DAUNER, H. PLANCK and H. J. BRÜNING, Hefte zur Zeitschrift der Unfallchirurg 234 (1994) 25.

    Google Scholar 

  14. O. NOISET, Y. J. SCHNEIDER and J. MARCHAND-BRYNAERT, J. Biomater. Sci. Polym. Ed 10 (1999) 657.

    CAS  PubMed  Google Scholar 

  15. Idem, ibid. 11 (2000) 767.

    Article  CAS  PubMed  Google Scholar 

  16. S. D. COOK and A. M. RUST-DAWICKI, J. Oral. Implantol. 21 (1995) 176.

    CAS  PubMed  Google Scholar 

  17. K. SCHRÖDER, A. MEYER-PLATH, D. KELLER, W. BESCH, G. BABUCKE and A. OHL, Contrib. Plasma. Phys. 41 (2001) 562.

    Article  Google Scholar 

  18. K. SCHRÖDER, D. KELLER, A. MEYER-PLATH, U. MÜLLER and A. OHL, in “Materials for Medical Engineering”, edited by H. Stallforth and P. Revell (Weinheim, Wiley-VCH, 2000) p. 161.

    Google Scholar 

  19. K. SCHRÖDER, A. MEYER-PLATH, D. KELLER and A. OHL, Plasm. Polym. 7 (2002) 103.

    Article  Google Scholar 

  20. P. DUCY, M. STARBUCK, M. PRIEMEL, J. SHEN, G. PINERO, V. GEOFFROY, M. AMLING and G. KARSENTY, Genes Dev. 13 (1999) 1025.

    CAS  PubMed  Google Scholar 

  21. G. ZHANG, R. A. LATOUR, JR., J. M. KENNEDY, S. H. DEL, JR. and R. J. FRIEDMAN, Biomaterials 17 (1996) 781.

    Article  CAS  PubMed  Google Scholar 

  22. L. M. WENZ, K. MERRITT, S. A. BROWN, A. MOET and A. D. STEFFEE, J Biomed. Mater. Res. 24 (1990) 207.

    Article  CAS  PubMed  Google Scholar 

  23. A. HUNTER, C. W. ARCHER, P. S. WALKER and G. W. BLUNN, Biomaterials 16 (1995) 287.

    Article  CAS  PubMed  Google Scholar 

  24. A. KATZER, H. MARQUARDT, J. WESTENDORF, J. V. WENING and G. VON FOERSTER, ibid. 23 (2002) 1749.

    Article  CAS  PubMed  Google Scholar 

  25. K. C. OLBRICH, T. T. ANDERSEN, F. A. BLUMENSTOCK and R. BIZIOS, ibid. 17 (1996) 759.

    Article  CAS  PubMed  Google Scholar 

  26. D. A. PULEO, L. A. HOLLERAN, R. H. DOREMUS and R. BIZIOS, J. Biomed. Mater. Res. 25 (1991) 711.

    Article  CAS  PubMed  Google Scholar 

  27. A. REZANIA, C. H. THOMAS and K. E. HEALY, Ann. Biomed. Eng. 25 (1997) 190.

    CAS  PubMed  Google Scholar 

  28. D. J. SIMMONS, G. N. KENT, R. L. JILKA, D. M. SCOTT, M. FALLON and D. V. COHN, Calcif. Tissue Int. 34 (1982) 291.

    CAS  PubMed  Google Scholar 

  29. C. HENDRICH, U. NOTH, U. STAHL, F. MERKLEIN, C. P. RADER, N. SCHUTZE, R. THULL, R. S. TUAN and J. EULERT, Clin. Orthop. (2002) 278.

  30. W. LINHART, F. PETERS, W. LEHMANN, K. SCHWARZ, A. F. SCHILLING, M. AMLING, J. M. RUEGER and M. EPPLE, J. Biomed. Mater. Res. 54 (2001) 162.

    Article  CAS  PubMed  Google Scholar 

  31. J. O. HOLLINGER and J. P. SCHMITZ, Ann. N. Y. Acad. Sci 831 (1997) 427.

    CAS  PubMed  Google Scholar 

  32. J. MEYER, B. WIES, M. KANTLEHNER and H. KESSLER, in “Zelluläre Interaktion mit Biomaterialien,” edited by N. M. Meenen, A. Katzer and J. M. Rueger Berlin (Heidelberg, Springer Verlag, 2000) p. 33.

    Google Scholar 

  33. A. OHL and K. SCHRÖDER, Surf. Coat. Tech. 116–119 (1999) 820.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Briem.

Additional information

The first two authors share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briem, D., Strametz, S., Schröoder, K. et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci: Mater Med 16, 671–677 (2005). https://doi.org/10.1007/s10856-005-2539-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-2539-z

Keywords

Navigation