Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces

  • D. Briem
  • S. Strametz
  • K. Schröoder
  • N. M. Meenen
  • W. Lehmann
  • W. Linhart
  • A. Ohl
  • J. M. Rueger


Polyetheretherketone (PEEK) is a synthetic polymer with suitable biomechanical and stable chemical properties, which make it attractive for use as an endoprothetic material and for ligamentous replacement. However, chemical surface inertness does not account for a good interfacial biocompatibility, and PEEK requires a surface modification prior to its application in vivo.

In the course of this experimental study we analyzed the influence of plasma treatment of PEEK surfaces on the cell proliferation and differentiation of primary fibroblasts and osteoblasts. Further we examined the possibility of inducing microstructured cell growth on a surface with plasma-induced chemical micropatterning.

We were able to demonstrate that the surface treatment of PEEK with a low-temperature plasma has significant effects on the proliferation of fibroblasts. Depending on the surface treatment, the proliferation rate can either be stimulated or suppressed. The behavior of the osteoblasts was examined by evaluating differentiation parameters.

By detection of alkaline phosphatase, collagen I, and mineralized extracellular matrix as parameters for osteoblastic differentiation, the examined materials showed results comparable to commercially available polymer cell culture materials such as tissue culture polystyrene (TCPS). Further microstructured cell growth was produced successfully on micropatterned PEEK foils, which could be a future tool for bioartificial systems applying the methods of tissue engineering.

These results show that chemically inert materials such as PEEK may be modified specifically through the methods of plasma technology in order to improve biocompatibility.


Alkaline Phosphatase Tissue Engineering Surface Treatment Plasma Treatment Osteoblastic Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. A. HORBETT, in “Proteins at Interfaces,” edited by T. A. Horbett and T. A. Brash (American Chemical Society, Washington DC, 1987).Google Scholar
  2. 2.
    B. D. RATNER, in “Comprehensive Polymer Science,” edited by G. Allen and J. C. Bevington (Pergamon Press, New York, 1989) p. 201.Google Scholar
  3. 3.
    R. THULL, Orthopade 32 (2003) 51.CrossRefPubMedGoogle Scholar
  4. 4.
    B. D. RATNER, in “Surface Modification of Polymeric Biomaterials,” edited by B. D. Ratner and D. G. Castner (Plenum Press, New York, 1997) p. 35.Google Scholar
  5. 5.
    A. BRUNHOLD, F. KLEINERT, R. SCHNABEL and S. MARINOW, Lackiertechnik 51 (1997) 37.Google Scholar
  6. 6.
    D. KLEE and H. HÖCKER, Spektrum der Wissenschaft 6 (1995) 90.Google Scholar
  7. 7.
    R. D’AGOSTINO, Academic Press, 1990.Google Scholar
  8. 8.
    D. M. MANOS and D. L. FLAMM, Academic Press, 1986.Google Scholar
  9. 9.
    C. MORRISON, R. MACNAIR, C. MAcDONALD, A. WYKMAN, I. GOLDIE and M. H. GRANT, Biomaterials 16 (1995) 987.CrossRefPubMedGoogle Scholar
  10. 10.
    D. F. WILLIAMS and A. McNAMARA, J. Mater. Sci. Lett. 6 (1987) 188.CrossRefGoogle Scholar
  11. 11.
    J. A. BRYDSON (ed.) “Aromatic Polyetherketones” Butterworths London, 1989).Google Scholar
  12. 12.
    C. P. SMITH, Swiss Plastics 3 (1981) 37.Google Scholar
  13. 13.
    M. DAUNER, H. PLANCK and H. J. BRÜNING, Hefte zur Zeitschrift der Unfallchirurg 234 (1994) 25.Google Scholar
  14. 14.
    O. NOISET, Y. J. SCHNEIDER and J. MARCHAND-BRYNAERT, J. Biomater. Sci. Polym. Ed 10 (1999) 657.PubMedGoogle Scholar
  15. 15.
    Idem, ibid. 11 (2000) 767.CrossRefPubMedGoogle Scholar
  16. 16.
    S. D. COOK and A. M. RUST-DAWICKI, J. Oral. Implantol. 21 (1995) 176.PubMedGoogle Scholar
  17. 17.
    K. SCHRÖDER, A. MEYER-PLATH, D. KELLER, W. BESCH, G. BABUCKE and A. OHL, Contrib. Plasma. Phys. 41 (2001) 562.CrossRefGoogle Scholar
  18. 18.
    K. SCHRÖDER, D. KELLER, A. MEYER-PLATH, U. MÜLLER and A. OHL, in “Materials for Medical Engineering”, edited by H. Stallforth and P. Revell (Weinheim, Wiley-VCH, 2000) p. 161.Google Scholar
  19. 19.
    K. SCHRÖDER, A. MEYER-PLATH, D. KELLER and A. OHL, Plasm. Polym. 7 (2002) 103.CrossRefGoogle Scholar
  20. 20.
    P. DUCY, M. STARBUCK, M. PRIEMEL, J. SHEN, G. PINERO, V. GEOFFROY, M. AMLING and G. KARSENTY, Genes Dev. 13 (1999) 1025.PubMedGoogle Scholar
  21. 21.
    G. ZHANG, R. A. LATOUR, JR., J. M. KENNEDY, S. H. DEL, JR. and R. J. FRIEDMAN, Biomaterials 17 (1996) 781.CrossRefPubMedGoogle Scholar
  22. 22.
    L. M. WENZ, K. MERRITT, S. A. BROWN, A. MOET and A. D. STEFFEE, J Biomed. Mater. Res. 24 (1990) 207.CrossRefPubMedGoogle Scholar
  23. 23.
    A. HUNTER, C. W. ARCHER, P. S. WALKER and G. W. BLUNN, Biomaterials 16 (1995) 287.CrossRefPubMedGoogle Scholar
  24. 24.
    A. KATZER, H. MARQUARDT, J. WESTENDORF, J. V. WENING and G. VON FOERSTER, ibid. 23 (2002) 1749.CrossRefPubMedGoogle Scholar
  25. 25.
    K. C. OLBRICH, T. T. ANDERSEN, F. A. BLUMENSTOCK and R. BIZIOS, ibid. 17 (1996) 759.CrossRefPubMedGoogle Scholar
  26. 26.
    D. A. PULEO, L. A. HOLLERAN, R. H. DOREMUS and R. BIZIOS, J. Biomed. Mater. Res. 25 (1991) 711.CrossRefPubMedGoogle Scholar
  27. 27.
    A. REZANIA, C. H. THOMAS and K. E. HEALY, Ann. Biomed. Eng. 25 (1997) 190.PubMedGoogle Scholar
  28. 28.
    D. J. SIMMONS, G. N. KENT, R. L. JILKA, D. M. SCOTT, M. FALLON and D. V. COHN, Calcif. Tissue Int. 34 (1982) 291.PubMedGoogle Scholar
  29. 29.
    C. HENDRICH, U. NOTH, U. STAHL, F. MERKLEIN, C. P. RADER, N. SCHUTZE, R. THULL, R. S. TUAN and J. EULERT, Clin. Orthop. (2002) 278.Google Scholar
  30. 30.
    W. LINHART, F. PETERS, W. LEHMANN, K. SCHWARZ, A. F. SCHILLING, M. AMLING, J. M. RUEGER and M. EPPLE, J. Biomed. Mater. Res. 54 (2001) 162.CrossRefPubMedGoogle Scholar
  31. 31.
    J. O. HOLLINGER and J. P. SCHMITZ, Ann. N. Y. Acad. Sci 831 (1997) 427.PubMedGoogle Scholar
  32. 32.
    J. MEYER, B. WIES, M. KANTLEHNER and H. KESSLER, in “Zelluläre Interaktion mit Biomaterialien,” edited by N. M. Meenen, A. Katzer and J. M. Rueger Berlin (Heidelberg, Springer Verlag, 2000) p. 33.Google Scholar
  33. 33.
    A. OHL and K. SCHRÖDER, Surf. Coat. Tech. 116–119 (1999) 820.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • D. Briem
    • 1
  • S. Strametz
    • 1
  • K. Schröoder
    • 2
  • N. M. Meenen
    • 1
  • W. Lehmann
    • 1
  • W. Linhart
    • 1
  • A. Ohl
    • 2
  • J. M. Rueger
    • 1
  1. 1.Department of Trauma-, Hand- and Reconstructive Surgery, School of MedicineHamburg UniversityHamburgGermany
  2. 2.Institut für Niedertemperatur-Plasmaphysik (INP)GreifswaldGermany

Personalised recommendations