Control of surface morphology of carbide coating on Co-Cr-Mo implant alloy

  • N. S. Vandamme
  • L. D. T. Topoleski


Wear of materials used in artificial joints is a common failure mode of artificial joints. A low wear rate for implants is believed to be critical for extending implant service time. We developed a carbide-coated Co-Cr-Mo implant alloy created in plasma of methane and hydrogen mixed gas by a microwave plasma-assisted surface reaction. The carbide-coated Co-Cr-Mo has a unique “brain coral-like” surface morphology and is much harder than uncoated Co-Cr-Mo. The effect of plasma processing time and temperature on the surface morphology of the top carbide layer was studied toward optimizing the surface coating. The ratios of average roughness, Ra, core roughness, Rk, and summation of core roughness, reduced peak height (Rpk) and reduced valley depth (Rvk), Rk+ Rpk+ Rvk, for the 6-h/985 C coating to those for the 0.5-h/985 C coating were 1.9, 1.7, and 1.9, respectively. The ratios of Ra, Rk, and Rk+ Rpk+ Rvk for the 4-h/1000 C coating to those for the 4-h/939 C coating were 2.3, 2.3, and 2.0, respectively. With the proper combination of plasma processing time and temperature, it may be possible to change the thickness of the peak-valley top cluster by fourfold from ∼ 0.6 μ m to ∼ 2.5 μ m. Finally, the growth mechanism of the carbide layers on Co-Cr-Mo was discussed in the context of atomic composition analysis.


Surface Morphology Wear Rate Service Time Average Roughness Atomic Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BATTELLE MEMORIAL INSTITUTE, “Cobalt Monograph” edited by Centre d’Information du Cobalt (M. Weissenbruch LTD., Belgium, 1960) pp. 416 and 509.Google Scholar
  2. 2.
    C. T. SIMS, in “The Superalloys” edited by C. T. Sims and W. C. Hagel (John Wiley & Sons, New York, 1972) p. 145.Google Scholar
  3. 3.
    J. A. DISEGI, R. L. KENNEDY and R. PILLIAR, in “Cobalt-Base Alloys for Biomedical Appliations,” edited by J. A. Disegi, R. L. Kennedy and R. Pilliar (American Society for Testing and Materials, West Conshohocken, PA, 1999).Google Scholar
  4. 4.
    H.-G. WILLERT, H. BERTRAM and G. H. BUCHHORN, Clin. Orthop. Relat. Res. 258 (1990) 95.Google Scholar
  5. 5.
    H. C. AMSTUTZ, P. CAMPBELL, N. KOSSOVSKY and I. C. CLARKE, ibid. 276 (1992) 7.PubMedGoogle Scholar
  6. 6.
    D. DOWSON, Wear 190 (1995) 171.CrossRefGoogle Scholar
  7. 7.
    J. E. NEVELOS, E. INGHAM, C. DOYLE, A. B. NEVELOS and J. FISHER, Biomaterials 22 (2001) 2191.CrossRefPubMedGoogle Scholar
  8. 8.
    K. TANAKA, J. TAMURA, K. KAWANABE, M. NAWA, M. OKA, M. UCHIDA, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 63 (2002) 262.CrossRefPubMedGoogle Scholar
  9. 9.
    P. FIRKINS, J. L. HAILEY and J. FISHER, J. Mat. Sci.: Mater. in Med. 9 (1998) 597.CrossRefGoogle Scholar
  10. 10.
    H. A. MCKELLOP and T. V. RÖSTLUND, J. Biomed. Mater. Res. 24 (1990) 1413.CrossRefPubMedGoogle Scholar
  11. 11.
    N. S. VANDAMME, L. QUE and L. D. T. TOPOLESKI, J. Mat. Sci. 34 (1999) 3525.CrossRefGoogle Scholar
  12. 12.
    J. M. HARRISON and J. F. NORTON, in “Behaviour of High Temperature Alloys in Aggressive Environments,” edited by J. Kirman, J. B. Mariott, M. Merz, P. R. Sahm and D. P. Whittle (The Metals Society, London, 1980) p. 661.Google Scholar
  13. 13.
    H. M. TAWANCY and N. M. ABBAS, J. Mat. Sci. 27 (1992) 1061.CrossRefGoogle Scholar
  14. 14.
    N. S. VANDAMME, B. H. WAYMAN and L. D. T. TOPOLESKI, J. Mat. Sci.: Mater. in Med. 14 (2003) 47.CrossRefGoogle Scholar
  15. 15.
    ASM Committee on Gas Carburizing, “Gas Carburizing” (American Society for Metals, OH, 1964) p. 50.Google Scholar
  16. 16.
    T. A. RAMANARAYANAN and D. J. SROLOVITZ, J. Electrochem. Soc 132 (1985) 2268.Google Scholar
  17. 17.
    A. M. STAINES and T. BELL, Thin Solid Films 86 (1981) 201.CrossRefGoogle Scholar
  18. 18.
    I. ASANO, T. ARAKI and Y. IKAWA, Mater. Sci. Eng. A140 (1991) 461.Google Scholar
  19. 19.
    L. E. TOTH, “Transition Metal Carbide and Nitrides” (Academic Press, New York, 1971) p. 82.Google Scholar
  20. 20.
    T. EL-RAGHY and M. W. BARSOUM, J. Appl. Phys. 83 (1998) 112.CrossRefGoogle Scholar
  21. 21.
    C. R. ANDERSON, private communication.Google Scholar
  22. 22.
    J. I. GOLDSTEIN, A. D. ROMIG, JR., D. E. NEWBURY, C. E. LYMAN, P. ECHLIN, C. FIORI, D. C. JOY and E. LIFSHIN, “Scanning Electron Microscopy and X-Ray Microanalysis” 2nd ed. (Plenum Press, New York, 1992) p. 526.Google Scholar
  23. 23.
    W. KÖSTER and F. SPERNER, Arch. Eisenhüttenwesen 26 (1955) 555.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUMBCBaltimoreUSA

Personalised recommendations