Advertisement

Microstructures and bond strengths of plasma-sprayed hydroxyapatite coatings on porous titanium substrates

  • Ik-Hyun Oh
  • N. Nomura
  • A. Chiba
  • Y. Murayama
  • N. Masahashi
  • Byong-Taek Lee
  • S. Hanada
Article

Abstract

Hydroxyapatite (HA) coating was carried out by plasma spraying on bulk Ti substrates and porous Ti substrates having a Young’s modulus similar to that of human bone. The microstructures and bond strengths of HA coatings were investigated in this study. The HA coatings with thickness of 200–250 μ m were free from cracks at interfaces between the coating and Ti substrates. XRD analysis revealed that the HA powder used for plasma spraying had a highly crystallized apatite structure, while the HA coating contained several phases other than HA. The bond strength between the HA coating and the Ti substrates evaluated by standard bonding test (ASTM C633-01) were strongly affected by the failure behavior of the HA coating. A mechanism to explain the failure is discussed in terms of surface roughness of the plasma-sprayed HA coatings on the bulk and porous Ti substrates.

Keywords

Microstructure Titanium Surface Roughness Apatite Hydroxyapatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. C. YANG and EDWARD CHANG, Biomaterials 22(2000) 1827.CrossRefGoogle Scholar
  2. 2.
    C. CHU, J. ZHU, Z. YIN and S. WANG, Mater. Sci. Eng. A A271 (1999) 99.Google Scholar
  3. 3.
    Y. C. TSUI, C. DOYLE and T. W. CLYNE, Biomaterials 19 (1998) 2015.CrossRefPubMedGoogle Scholar
  4. 4.
    S. W. K. KWEH, K. A. KHOR and P. CHEANG, ibid. 21 (2000) 1223.CrossRefPubMedGoogle Scholar
  5. 5.
    X. ZHENG, M. HUANG and C. DING, ibid. 21 (2000) 841.CrossRefPubMedGoogle Scholar
  6. 6.
    G. JIANG and D. SHI, J. Biomed. Mater. Res. 43 (1998) 77.CrossRefPubMedGoogle Scholar
  7. 7.
    J. WENG, X. G. LIU, X. D. LI and X. D. ZHANG, Biomaterials 16 (1995) 39.CrossRefPubMedGoogle Scholar
  8. 8.
    C. F. FENG, K. A. KHOR, E. J. LIU and P. CHEANG, Scripta Mater. 42 (2000) 103.CrossRefGoogle Scholar
  9. 9.
    B. Y. CHOU and E. CHANG, Surf. Coat. Techn. 153 (2002) 84.CrossRefGoogle Scholar
  10. 10.
    F. TAKESHITA, Y. AYUKAWA, S. IYMA, K. MURAI and T. SUETSUGU, J. Biomed. Mater. Res. 37 (1997) 235.CrossRefPubMedGoogle Scholar
  11. 11.
    R. NOORT, J. Mater. Sci. 22 (1987) 3801.CrossRefGoogle Scholar
  12. 12.
    K. HEALY and P. DUCHEYNE, J. Biomed. Mater. Res. 36 (1992) 319.CrossRefGoogle Scholar
  13. 13.
    M. KHAN, R. WILLIAMS and D. WILLIAMS, Biomaterials 20 (1999) 765.CrossRefPubMedGoogle Scholar
  14. 14.
    R. GEEKINK, K. GROOT and C. KLEIN, J. Bone Joint Surg. 70-B (1988) 17.Google Scholar
  15. 15.
    H. OONISHI, M. YANAMOTO, M. H. ISHIMARU, E. TSUJI and S. KUSHITANI, J. Bone Joint Surg. 71-B (1989) 213.Google Scholar
  16. 16.
    R. LEGEROS, Clinical Mater. 14 (1993) 65.CrossRefGoogle Scholar
  17. 17.
    J. DALTON and S. COOK, J. Biomed. Mater. Res. 29 (1995) 239.CrossRefPubMedGoogle Scholar
  18. 18.
    T. LI, J. LEE, T. KOBAYASHI and H. AOKI, J. Mater. Sci.: Mater. Med. 7 (1996) 355.CrossRefGoogle Scholar
  19. 19.
    M. SHIKHANZADEH, ibid. 6 (1995) 90.CrossRefGoogle Scholar
  20. 20.
    S. BROWN, I. TURNER and H. REITER, ibid. 5 (1994) 756.CrossRefGoogle Scholar
  21. 21.
    S. COOK, K. THOMAS and J. KAY, Clin. Orthop. 265 (1991) 280.PubMedGoogle Scholar
  22. 22.
    J. COLLIER, V. SUPRENANT, M. MAYER, M. WRONA, R. JENSEN and H. SUPERNANT, J. Arthroplasty 8 (1993) 389.PubMedGoogle Scholar
  23. 23.
    I.-H. OH, N. NOMURA, N. MASAHASHI and S. HANADA, Scripta Materialia 49 (2003) 1197.CrossRefGoogle Scholar
  24. 24.
    C. E. WEN, M. MABUCHI, Y. YAMADA, K. SHIMOJIMA, Y. CHINO and T. ASAHINA, ibid. 19 (2001) 1147.CrossRefGoogle Scholar
  25. 25.
    M. THIEME, K. P. WIETERS, F. BERGNER, D. SCHARNWEBER, H. WORCH, J. NDOP, T. J. KIM and W. GRILL, Mater. Sci. Forum 308–311 (1999) 374.Google Scholar
  26. 26.
    M. LONG and H. RACK, Biomaterials 19 (1998) 1621.PubMedGoogle Scholar
  27. 27.
    P. CHEANG and K. A. KHOR, ibid. 17 (1996) 537.CrossRefPubMedGoogle Scholar
  28. 28.
    A. EVANS, G. CRUMLEY and R. DEMARAY, Oxidat. Met. 20 (1983) 196.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Ik-Hyun Oh
    • 1
  • N. Nomura
    • 2
  • A. Chiba
    • 2
  • Y. Murayama
    • 3
  • N. Masahashi
    • 3
  • Byong-Taek Lee
    • 4
  • S. Hanada
    • 3
  1. 1.Korea Institute of Industrial Technology (KITECH)Wolgye-Dong, Gwangsan-gu, GwangjuSouth Korea
  2. 2.Department of Welfare EngineeringIwate UniversityMoriokaJapan
  3. 3.Institute for Materials Research (IMR)Tohoku UniversitySendaiJapan
  4. 4.School of Advanced Materials EngineeringKongju National UniversityKongju City, ChungnamSouth Korea

Personalised recommendations