Skip to main content
Log in

Precipitation of hydroxyapatite nanoparticles: Effects of precipitation method on electrophoretic deposition

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrophoretic deposition is a low-cost, simple, and flexible coating method for producing hydroxyapatite (HA) coatings on metal implants with a broad range of thicknesses, from < 1 μ m to > 500 μ m. As for many other HA coating techniques, densification of electrophoretically deposited coatings involves heating the coated metal to temperatures above 1000 C. Metal substrates tend to react with HA coatings at such temperatures inducing decomposition at temperatures below 1050 C (decomposition for pure HA normally occurs above 1300 C). Therefore, densification of these coatings needs to be conducted at temperatures lower than 1050 C, and this necessitates the use of high-surface-area HA nano-precipitates, rather than commercially available pre-calcined powders, which densify at temperatures typically higher than 1200 C. HA nano-precipitates were prepared by three methods and deposited on metal substrates by electrophoresis: (1) the acid base method, which produced plate-like nano-particles with a 2.5:1 aspect ratio, and severely cracked coatings; (2) the calcium acetate method, which produced needle-like nano-particles with a 10:1 aspect ratio, and slightly cracked coatings; (3) the metathesis method, which produced rounded nano-particles with a 2:1 aspect ratio, and high-quality crack-free coatings. The results suggested that the less equiaxed the nano-particles, the more cracked the coatings obtained by the electrophoretic deposition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. PARK and R. S. LAKES, “Biomaterials: An Introduction” (Plenum Press, New York, 1992).

    Google Scholar 

  2. A. RAVAGLIOLI and A. KRAJEWSKI, “Bioceramics: Materials, Properties, Applications“ (Chapman & Hall, London, 1992).

    Google Scholar 

  3. A. J. RUYS, N. EHSANI, B. K. MILTHORPE, K. HUSSLEIN, M. KOSCHIG and C. C. SORRELL, in Proceedings. Pacrim II: Second International Symposium of Pacific Rim Ceramic Societies, edited by P. A. Walls, C. C. Sorrell and A. J. Ruys (Australasian Ceramic Society, Cairns, 1997), p. 45.

  4. K. A. GROSS, N. RAY and M. ROKKUM, J. Biomed. Mater. Res. 63 (2002) 106.

    Google Scholar 

  5. H. ZENG and W. R. LACEFIELD, ibid. 50 (2000) 239.

    Google Scholar 

  6. R. CHIESA, E. SANDRINI, M. SANTIN, G. RONDELLI and A. CIGADA, J. Appl. Biomat. Biomech. 1 (2003) 91.

    Google Scholar 

  7. A. MILEV, G. S. K. KANNANGARA and B. BEN-NISSAN, Mater. Lett. 57 (2003) 1960.

    Google Scholar 

  8. M. WEI, M. UCHIDA, H. KIM, T, KOKUBO and T. NAKAMURA, Biomater. 23 (2001) 167.

    Google Scholar 

  9. M. WEI, A. J. RUYS, B. K. MILTHORPE, C. C. SORRELL and J. H. EVANS, J. Sol-Gel Sci. Tech. 21 (2001) 39.

    Google Scholar 

  10. J. B. BIRKS and J. H. SCHULMAN, “Progress in Dielectrics. Volume I” (Heywood & Company Ltd., London, 1959).

    Google Scholar 

  11. M. WEI, A. J. RUYS, B. K. MILTHORPE and C. C. SORRELL, Mater. Eng. 9 (1998) 7.

    Google Scholar 

  12. A. J. RUYS, A. BRANDWOOD, B. K. MILTHORPE, M. R. DICKSON, K. A. ZEIGLER and C. C. SORRELL, J. Mater. Sci. Mater. Med. 6 (1995) 297.

    Google Scholar 

  13. A. J. RUYS, N. EHSANI, B. K. MILTHORPE and C. C. SORRELL, J. Aust. Ceram. Soc. 29 (1993) 65.

    Google Scholar 

  14. A. J. RUYS, K. A. ZEIGLER, B. K. MILTHORPE and C. C. SORRELL, in “Ceramics: Adding the Value,” edited by M. J. Bannister (CSIRO, Melbourne, 1992) p. 591.

    Google Scholar 

  15. P. DUCHEYNE, S. RADIN, M. HEUGHEBAERT and J. C. HEUGHEBAERT, Biomater. 11 (1990) 244.

    Google Scholar 

  16. A. J. RUYS, C. C. SORRELL, A. BRANDWOOD and B. K. MILTHORPE, J. Mater. Sci. Lett. 14 (1995) 744.

    Google Scholar 

  17. A. J. RUYS, M. WEI, C. C. SORRELL, M. R. DICKSON, A. BRANDWOOD and B. K. MILTHORPE, Biomater. 16 (1995) 409.

    Google Scholar 

  18. W. LI and L. GAO, Guocheng Gongcheng Xuebao 2 (2002) 305.

    Google Scholar 

  19. H. TAGAI and H. AOKI, “Mechanical Properties of Biomaterials” (John Wiley, New York, 1980).

    Google Scholar 

  20. B. F. YETER-DAL, V. GROSS and T. W. TURNEY, in “Ceramics: Adding the Value,” edited by M. J. Bannister (CSIRO, Melbourne, 1992) p. 617.

    Google Scholar 

  21. T. FUTAGAMI and T. OKAMOTO, J. Ceram. Soc. Japan. 95 (1987) 775.

    Google Scholar 

  22. M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  23. M. WEI, T. BOSTROM, L. GRØNDAHL and J. H. EVANS, J. Mater. Sci. Mater. Med. 14 (2003) 311.

    Google Scholar 

  24. K.-M. HUNG and W.-D. YANG, Mater. Manuf. Proc. 17 (2002) 323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, M., Ruys, A.J., Milthorpe, B.K. et al. Precipitation of hydroxyapatite nanoparticles: Effects of precipitation method on electrophoretic deposition. J Mater Sci: Mater Med 16, 319–324 (2005). https://doi.org/10.1007/s10856-005-0630-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-0630-0

Keywords

Navigation