Precipitation of hydroxyapatite nanoparticles: Effects of precipitation method on electrophoretic deposition

  • M. Wei
  • A. J. Ruys
  • B. K. Milthorpe
  • C. C. Sorrell


Electrophoretic deposition is a low-cost, simple, and flexible coating method for producing hydroxyapatite (HA) coatings on metal implants with a broad range of thicknesses, from < 1 μ m to > 500 μ m. As for many other HA coating techniques, densification of electrophoretically deposited coatings involves heating the coated metal to temperatures above 1000 C. Metal substrates tend to react with HA coatings at such temperatures inducing decomposition at temperatures below 1050 C (decomposition for pure HA normally occurs above 1300 C). Therefore, densification of these coatings needs to be conducted at temperatures lower than 1050 C, and this necessitates the use of high-surface-area HA nano-precipitates, rather than commercially available pre-calcined powders, which densify at temperatures typically higher than 1200 C. HA nano-precipitates were prepared by three methods and deposited on metal substrates by electrophoresis: (1) the acid base method, which produced plate-like nano-particles with a 2.5:1 aspect ratio, and severely cracked coatings; (2) the calcium acetate method, which produced needle-like nano-particles with a 10:1 aspect ratio, and slightly cracked coatings; (3) the metathesis method, which produced rounded nano-particles with a 2:1 aspect ratio, and high-quality crack-free coatings. The results suggested that the less equiaxed the nano-particles, the more cracked the coatings obtained by the electrophoretic deposition technique.


Aspect Ratio Hydroxyapatite Rounded Metal Substrate Deposition Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. PARK and R. S. LAKES, “Biomaterials: An Introduction” (Plenum Press, New York, 1992).Google Scholar
  2. 2.
    A. RAVAGLIOLI and A. KRAJEWSKI, “Bioceramics: Materials, Properties, Applications“ (Chapman & Hall, London, 1992).Google Scholar
  3. 3.
    A. J. RUYS, N. EHSANI, B. K. MILTHORPE, K. HUSSLEIN, M. KOSCHIG and C. C. SORRELL, in Proceedings. Pacrim II: Second International Symposium of Pacific Rim Ceramic Societies, edited by P. A. Walls, C. C. Sorrell and A. J. Ruys (Australasian Ceramic Society, Cairns, 1997), p. 45.Google Scholar
  4. 4.
    K. A. GROSS, N. RAY and M. ROKKUM, J. Biomed. Mater. Res. 63 (2002) 106.Google Scholar
  5. 5.
    H. ZENG and W. R. LACEFIELD, ibid. 50 (2000) 239.Google Scholar
  6. 6.
    R. CHIESA, E. SANDRINI, M. SANTIN, G. RONDELLI and A. CIGADA, J. Appl. Biomat. Biomech. 1 (2003) 91.Google Scholar
  7. 7.
    A. MILEV, G. S. K. KANNANGARA and B. BEN-NISSAN, Mater. Lett. 57 (2003) 1960.Google Scholar
  8. 8.
    M. WEI, M. UCHIDA, H. KIM, T, KOKUBO and T. NAKAMURA, Biomater. 23 (2001) 167.Google Scholar
  9. 9.
    M. WEI, A. J. RUYS, B. K. MILTHORPE, C. C. SORRELL and J. H. EVANS, J. Sol-Gel Sci. Tech. 21 (2001) 39.Google Scholar
  10. 10.
    J. B. BIRKS and J. H. SCHULMAN, “Progress in Dielectrics. Volume I” (Heywood & Company Ltd., London, 1959).Google Scholar
  11. 11.
    M. WEI, A. J. RUYS, B. K. MILTHORPE and C. C. SORRELL, Mater. Eng. 9 (1998) 7.Google Scholar
  12. 12.
    A. J. RUYS, A. BRANDWOOD, B. K. MILTHORPE, M. R. DICKSON, K. A. ZEIGLER and C. C. SORRELL, J. Mater. Sci. Mater. Med. 6 (1995) 297.Google Scholar
  13. 13.
    A. J. RUYS, N. EHSANI, B. K. MILTHORPE and C. C. SORRELL, J. Aust. Ceram. Soc. 29 (1993) 65.Google Scholar
  14. 14.
    A. J. RUYS, K. A. ZEIGLER, B. K. MILTHORPE and C. C. SORRELL, in “Ceramics: Adding the Value,” edited by M. J. Bannister (CSIRO, Melbourne, 1992) p. 591.Google Scholar
  15. 15.
    P. DUCHEYNE, S. RADIN, M. HEUGHEBAERT and J. C. HEUGHEBAERT, Biomater. 11 (1990) 244.Google Scholar
  16. 16.
    A. J. RUYS, C. C. SORRELL, A. BRANDWOOD and B. K. MILTHORPE, J. Mater. Sci. Lett. 14 (1995) 744.Google Scholar
  17. 17.
    A. J. RUYS, M. WEI, C. C. SORRELL, M. R. DICKSON, A. BRANDWOOD and B. K. MILTHORPE, Biomater. 16 (1995) 409.Google Scholar
  18. 18.
    W. LI and L. GAO, Guocheng Gongcheng Xuebao 2 (2002) 305.Google Scholar
  19. 19.
    H. TAGAI and H. AOKI, “Mechanical Properties of Biomaterials” (John Wiley, New York, 1980).Google Scholar
  20. 20.
    B. F. YETER-DAL, V. GROSS and T. W. TURNEY, in “Ceramics: Adding the Value,” edited by M. J. Bannister (CSIRO, Melbourne, 1992) p. 617.Google Scholar
  21. 21.
    T. FUTAGAMI and T. OKAMOTO, J. Ceram. Soc. Japan. 95 (1987) 775.Google Scholar
  22. 22.
    M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.Google Scholar
  23. 23.
    M. WEI, T. BOSTROM, L. GRØNDAHL and J. H. EVANS, J. Mater. Sci. Mater. Med. 14 (2003) 311.Google Scholar
  24. 24.
    K.-M. HUNG and W.-D. YANG, Mater. Manuf. Proc. 17 (2002) 323.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. Wei
    • 1
  • A. J. Ruys
    • 2
  • B. K. Milthorpe
    • 3
  • C. C. Sorrell
    • 4
  1. 1.Department of Metallurgy and Materials EngineeringUniversity of ConnecticutUSA
  2. 2.Department of Biomedical Engineering, School of Aerospace Mechanical and Mechatronic EngineeringUniversity of SydneyAustralia
  3. 3.Graduate School for Biomedical EngineeringUniversity of New South WalesAustralia
  4. 4.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations