Effects of alginate encapsulation on mitochondrial activity

  • J. Oca-Cossio
  • N. E. Simpson
  • Z. Han
  • P. W. Stacpoole
  • I. Constantinidis


The long-term objective of our research is to study the biochemical consequences of primary genetic defects of the Pyruvate Dehydrogenase Complex, a key mitochondrial enzyme complex, by NMR spectroscopy. An established method to obtain energetic and metabolic information from intact cells involves the use of 31P and 13C NMR spectroscopic techniques. NMR spectra from live and fully functional cells can be obtained from cells encapsulated within alginate beads and maintained in a perfusion bioreactor throughout the NMR experiment. However, before spectroscopic studies can commence, the effects of alginate encapsulation on the general metabolism and mitochondrial activity of fibroblasts need to be determined. in this study we report glucose consumption and flow cytometry measurements (with the fluorescent markers MitoTracker GreenFM™ and Nonyl-acridine Orange™ to determine the mitochondrial status and mass) of healthy human fibroblasts encapsulated in a mannuronic acid-rich alginate matrix. The results show that alginate encapsulation of fibroblasts does not affect the glucose consumption, the mitochondrial integrity, or the mitochondrial mass during 21 days of in vitro culture.


Alginate Glucose Consumption Alginate Bead Mitochondrial Activity Pyruvate Dehydrogenase Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. T. GRANT, E. R. MORRIS, D. A. REES, P. J. C. SMITH and D. THOM, FEBS Lett. 32 (1973) 195.CrossRefGoogle Scholar
  2. 2.
    A. MARTINSEN, G. SKJAK-BRAEK and O. SMIDSROD, Biotechn. Bioengng. 33 (1989) 79.CrossRefGoogle Scholar
  3. 3.
    C. K. STABLER, C. WILKS, A. SAMBANIS and I. CONSTANTINIDIS, Biomaterials 22 (2001) 1301.CrossRefPubMedGoogle Scholar
  4. 4.
    I. CONSTANTINIDIS, I. RASK, R. C. LONG JR. and A. SAMBANIS, ibid. 20 (1999) 2019.Google Scholar
  5. 5.
    C. L. STABLER, A. SAMBANIS and I. CONSTANTINIDIS, Annals New York Acad. Sci. 961 (2002) 130.Google Scholar
  6. 6.
    N. E. SIMPSON, C. L. STABLER, A. SAMBANIS and I. CONSTANTINIDIS, Biomaterials. 25 (2004) 2603.CrossRefPubMedGoogle Scholar
  7. 7.
    D. C. WALLACE, G. SINGH, M. T. LOTT, J. A. HODGE, T. G. SCHURR, A. M. LEZZA, L. J. ELSAS 2nd and E. K. NIKOSKELAINEN, Science 242 (1988) 1427.PubMedGoogle Scholar
  8. 8.
    I. HOLT, A. E. HARDING and J. A. MORGAN-HUGHS, Nature 331 (1988) 717.CrossRefPubMedGoogle Scholar
  9. 9.
    D. JOHNS, New England J. Med. 333 (1995) 638.CrossRefGoogle Scholar
  10. 10.
    I. CONSTANTINIDIS and A. SAMBANIS, Biotechn. Bioengng. 47 (1995) 431.CrossRefGoogle Scholar
  11. 11.
    K. K. PAPAS, R. C. LONG JR., I. CONSTANTINIDIS and A. SAMBANIS, Biocheml. J 326 (1997) 807.Google Scholar
  12. 12.
    Idem., Biotech. Bioengng. 66 (1999) 219.CrossRefGoogle Scholar
  13. 13.
    K. K. PAPAS, R. C. LONG Jr., A. SAMBANIS and I. CONSTANTINIDIS, Cell Transplant. 9 (2000) 415.PubMedGoogle Scholar
  14. 14.
    R. C. LONG JR, K. K. PAPAS, A. SAMBANIS and I. CONSTANTINIDIS, J. Magn. Reson. 146 (2000) 49.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. Oca-Cossio
    • 1
  • N. E. Simpson
    • 1
  • Z. Han
    • 1
  • P. W. Stacpoole
    • 1
  • I. Constantinidis
    • 1
  1. 1.Department of Medicine, Division of EndocrinologyUniversity of FloridaGainesvilleUSA

Personalised recommendations