Journal of Materials Science: Materials in Medicine

, Volume 15, Issue 11, pp 1237–1246 | Cite as

Characterization and bond strength of electrolytic HA/TiO2 double layers for orthopedic applications

  • Chi-Min Lin
  • Shiow-Kang Yen


Insufficient bonding of juxtaposed bone to an orthopedic/dental implant could be caused by material surface properties that do not support new bone growth. For this reason, fabrication of biomaterials surface properties, which support osteointegration, should be one of the key objectives in the design of the next generation of orthopedic/dental implants. Titanium and titanium alloy have been widely used in several bioimplant applications, but when implanted into the human body, these still contain some disadvantages, such as poor osteointegration (forming a fibrous capsule), wear debris and metal ion release, which often lead to clinical failure. Electrolytic hydroxyapatite/titanium dioxide (HA/TiO2) double layers were successfully deposited on titanium substrates in TiCI4 solution and subsequently in the mixed solution of Ca(NO3)2 and NH4H2PO4, respectively. After annealing at 300°C for 1 h in the air, the coated specimens were evaluated by dynamic cyclic polarization tests, immersion tests, tensile tests, surface morphology observations, XRD analyses and cells culture. The adhesion strength of the HA coating were improved by the intermediate coating of TiO2from 11.3 to 46.7 MPa. From cell culture and immersion test results, the HA/TiO2 coated specimens promoted not only cells differentiation, but also appeared more bioactive while maintaining non-toxicity.


Titanium Alloy Adhesion Strength Wear Debris Immersion Test Polarization Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. WATARI, A. YOKOYAMA, F. SASO, M. UO and T. KAWASAKI, Composites PartB: Eng. 28B (1997) 5.CrossRefGoogle Scholar
  2. 2.
    P. L. BATAILLON, F. MONCHAU, M. BIGERELLE and H. F. HILDEBRAND, Biomol. Eng. 19 (2002) 133.CrossRefPubMedGoogle Scholar
  3. 3.
    C. H. KU, D. P. PIOLETTI, M. BROWNE and P. J. GREGSON, Biomaterials 23 (2002) 1447.CrossRefPubMedGoogle Scholar
  4. 4.
    I. DEGASNE, M. F. BASLE, V. DEMAIS, G. HURE, M. LESOURD, B. GROLLEAU, L. MERCIER and D. CHAPPARD, Calcif. Tissue Int. 64 (1999) 499.CrossRefPubMedGoogle Scholar
  5. 5.
    X. NIE, A. LEYLAND and A. MATTHEWS, Surf. Coat. Techno. 125 (2000) 407.CrossRefGoogle Scholar
  6. 6.
    H. KURZWEG, R. B. HEIMANN, T. TROCZYNSKI and M. L. WAVMAC, Biomaterials 19 (1998) 1507.CrossRefPubMedGoogle Scholar
  7. 7.
    D. J. LI, K. OHSAKI, K. LI, P. C. CUI, O. YE, K. BABA, Q. C. WANG, S. TENSIN and T. Y. TERUKO, Biomed. Mater. Res. 45 (1999) 322.CrossRefGoogle Scholar
  8. 8.
    A. M. EKTESSABI and H. KIMURA, Thin Solid Films 270 (1995) 335.CrossRefGoogle Scholar
  9. 9.
    G. K. DE, R. GEESINK, CPAT. KLEIN and P. SEREKIAN, Biomed. Mater. Res. 121 (1987) 1357.Google Scholar
  10. 10.
    R. MCPHERSON and N. GANE, Mater. Sci.: Mater. Med. 6 (1995) 327.CrossRefGoogle Scholar
  11. 11.
    H. KURZWEG and R. B. HEIMANN, Biomaterials 19 (1998) 1507.CrossRefPubMedGoogle Scholar
  12. 12.
    K. V. DIJK, H. G. SCHAEKEN, J. G. G. WOLKE and J. A. JANSEN, ibid. 17 (1998) 159.Google Scholar
  13. 13.
    O. YOSHINO and M. MASAMICHI, Surf. Coat. Technol. 65 (1994) 224.Google Scholar
  14. 14.
    c. K. WANG and L. J. H. CHERN, Biomaterials 18 (1997) 1331.CrossRefPubMedGoogle Scholar
  15. 15.
    R. DAMODARAN and B. M. MOUDGIL, Colloids Surface A: Physicochem. Eng. Aspects 80 (1993) 191.CrossRefGoogle Scholar
  16. 16.
    W. WENG and J. L. BAPTISTA, Am. Ceram. Soc. 82 (1999) 27.Google Scholar
  17. 17.
    W. WENG and J. L. BAPTISTA, Mater. Sci.: Mater. Med. 9 (1998) 159.CrossRefGoogle Scholar
  18. 18.
    H. HERO, H. WIE and R. B. JORGENSEN, Biomed. Mater. Res. 28 (1994) 343.CrossRefGoogle Scholar
  19. 19.
    P. G. BRADFORD, J. M. MAGLISH, A. S. PONTICELLI and K. L. KIRKWOOD, Arch. Oral Biol. 45 (2000) 159.CrossRefPubMedGoogle Scholar
  20. 20.
    Designation: C-633. Standard test method for adhesion of cohesive strength of flame-sprayed coatings, Annual Book of ASTM Standards, American Society for testing and materials, Philadelphia, PA, vol. 3.01, 1993, p. 665.Google Scholar
  21. 21.
    H. M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, Biomed. Mater. Res. 38 (1997) 121.CrossRefGoogle Scholar
  22. 22.
    T. KOKUBO, H. M. KIM and M. KAWASHITA, Biomaterials 24 (2003) 2161.CrossRefPubMedGoogle Scholar
  23. 23.
    S. K. YEN and C. M. LIN, Electrochem. Soc. 149 (2002) 79.CrossRefGoogle Scholar
  24. 24.
    K. L. KIRKWOOD, R. DZIAK and P. G. BRADFORD, Bone Mineral. Res. 11 (1996) 1889.Google Scholar
  25. 25.
    P. A. RAMIRES, A. ROMITO, F. COSENTINO and E. MILELLA, Biomaterials 22 (2001) 1467.CrossRefPubMedGoogle Scholar
  26. 26.
    O. H. LOWRY, N. R. ROBERTS, M. L. WU, W. S. HIXON and E. J. CRAWFORD, Biomed. Chem. 207 (1954) 19.Google Scholar
  27. 27.
    R. J. MAJESKA, J. T. RYABY and T. A. EINHORN, Orth. ReS. 20 (2002) 281.CrossRefGoogle Scholar
  28. 28.
    S. K. YEN and C. M. LIN, Mater. Chem. Phys. 77 (2002) 70.CrossRefGoogle Scholar
  29. 29.
    C. M. LIN and S. K. YEN, in Proceedings of the 8th Biomedical Materials and Technology Symposium, Taiwan, ROC September (2003) A101.Google Scholar
  30. 30.
    A. BEN-ZE’EV, Curr. Opin. Cell Biol. 9 (1997) 99.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Materials EngineeringNational Chung Hsing UniversityTaichungROC

Personalised recommendations