Preparation of MoS2-reduced graphene oxide/Au nanohybrid for electrochemical sensing of hydrazine

Abstract

In the present study, MoS2/reduced graphene oxide (rGO)/Au (MSRG/Au) nanohybrid was synthesized through one-step hydrothermal method and was applied to fabricate the modified electrode in order to detect hydrazine (N2H4, HY). Structure of MSRG/Au nanohybrid was characterized by various analyses including field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). Electrochemical behaviors of MoS2, MSRG, and MSRG/Au in buffer solution were investigated to show the role of simultaneous presence of rGO carbonaceous material and Au noble metal in improving activities of MoS2. Amperometric response of MSRG/Au-modified glassy carbon electrode (GC electrode) for oxidation of HY had two linear ranges of 2–30 µM and 30 µM–1.5 mM. Limit of detection (LOD) was estimated as 0.5 µM for HY. Because of the synergistic effect of gold nanoparticles, MSRG/Au nanohybrid had higher electrocatalytic activity, yet with less overpotential for oxidation of HY compared to MoS2/GC electrode and MSRG/GC electrode. After investigating the effect of intrusive ions on determination of analyte, the sensor maintained its great stability, reproducibility, and selectivity for detection of HY. Based on the results, modification of MSRG with Au may be an effective sensing platform to detect HY.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Z. Luo, B. Liu, T. Qin et al., Cyclization of chalcone enables ratiometric fluorescence determination of hydrazine with high selectivity. Sens. Actuators B 263, 229–236 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    S. Manzar, A. Muhammad, N. Baig et al., A new water-stable zinc metal-organic framework as an electrode material for hydrazine sensing. N. J. Chem. 42, 12486–12491 (2018)

    Article  Google Scholar 

  3. 3.

    K. Mukherjee, T.I. Chio, H. Gu et al., Benzocoumarin hydrazine: a large stokes shift fluorogenic sensor for detecting carbonyls in isolated biomolecules and live cells. ACS Sens. 2, 128–134 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    S. Zhao, L.L. Wang, T.T. Wang et al., Performance hydrazine electrochemical sensor based on gold nanoparticles/single-walled carbon nanohorns composite film. Appl. Surf. Sci. 369, 36–42 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    H. Amin, N.F. Atta, A. Galal, Gold nanoparticles decorated graphene as a high-performance sensor for detection of trace hydrazine levels in the water. Electroanalysis 30, 1757–1766 (2018)

    Article  CAS  Google Scholar 

  6. 6.

    M.M. Shahid, P. Rameshkumar, W.J. Basirunc et al., An electrochemical sensing platform of cobalt oxide @ gold nanocubes interleaved reduced graphene oxide for the selective determination of hydrazine. Electrochim. Acta 259, 606–616 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Dong, Z. Yang, Q. Sheng, J. Zheng, solvothermal synthesis of Ag@Fe3O4 nanosphere and its application as hydrazine sensor. Colloids Surf. A 538, 371–377 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    V.S. Manikandan, Zh. Liu, A. Chen, Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode. Anal. Chim. Acta 819, 524–532 (2018)

    CAS  Google Scholar 

  9. 9.

    J. Wang, T. Xie, Q. Deng et al., Three-dimensional interconnected Co(OH)2 nanosheets on Ti mesh as a highly sensitive electrochemical sensor for hydrazine detection. N. J. Chem. 43, 3218–3225 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    S. Ghasemi, S. Hosseini, F. Hasanpoor, S. Nabipour, Amperometric hydrazine sensor based on the use of Pt-Pd nanoparticles placed on reduced graphene oxide nanosheets. Microchim. Acta 186, 601 (2019)

    Article  CAS  Google Scholar 

  11. 11.

    M.M. Rahman, V.G. Alfonso, F.F. Santiago, Hydrazine sensors development based on a glassy carbon electrode modified with a nanostructured TiO2 film by electrochemical approach. Microchim. Acta 184, 2123–2129 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    H. Huang, T. Li, Y. Sun et al., Amperometric Sensing of hydrazine in environmental and biological samples by using CeO2-encapsulated gold nanoparticles on reduced graphene oxide. Microchip Acta 186, 46 (2019)

    Article  CAS  Google Scholar 

  13. 13.

    A. Kalaivani, S.S. Narayanan, Fabrication of CdSe quantum dots @ nickel hexacyanoferrate core-shell nanoparticles modified electrode for the electrocatalytic oxidation of hydrazine. J. Mater. Sci. 29, 20146–20155 (2018)

    CAS  Google Scholar 

  14. 14.

    N. Vishnu, A.S. Kumar, S. Badhulika, Selective in-situ derivatization of intrinsic nickel to nickel hexacyanoferrate on carbon nanotube and its application for electrochemical sensing of hydrazine. Anal. Chim. Acta 837, 60–66 (2019)

    CAS  Google Scholar 

  15. 15.

    P. Deroco, I. Melo, L. Silva et al., Carbon black supported Au-Pd core-shell nanoparticles within a di hexadecyl phosphate film for the development of hydrazine electrochemical sensor. Sens. Actuators B 256, 535–542 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    F. Asadi, N. Azizi, S. Ghasemi, Preparation of Ag nanoparticles on nano cobalt-based metal-organic framework (ZIF-67) as catalyst support for electrochemical determination of hydrazine. J. Mater. Sci. 30, 5410–5420 (2019)

    CAS  Google Scholar 

  17. 17.

    Z. Meng, M. Li, X. Liu, Z. Lei, Sensitive electrochemical sensor for hydrazine based on in situ synthesis of Cu3(BTC)2/GO nanocomposite. J. Mater. Sci. 30, 18617–18625 (2019)

    CAS  Google Scholar 

  18. 18.

    G.A. Tig, G. Gunendi, S. Pekyardimic, A selective sensor based on Au nanoparticles-graphene oxide-poly (2,6-pyridine dicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. J. Electroanal. Chem. 47, 607–618 (2017)

    Google Scholar 

  19. 19.

    Sh. Su, X. Han, Z. Lu et al., Facile synthesis of a MoS2–Prussian blue nanocube nanohybrid-based electrochemical sensing platform for hydrogen peroxide and carcinoembryonic antigen detection. ACS Appl. Mater. Interfaces. 9, 12773–12781 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    M.R. Shahmiri, A. Bahari, H. Karimi-Maleh et al., Ethynylferrocene-NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B 177, 70–77 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    H. Karimi-Maleh, A. Sanati, V.K. Gupta et al., A voltammetric biosensor based on ionic liquid/NiO nanoparticles modified carbon paste electrode for the determination of nicotinamide adenine (NADH). Sens. Actuators B 204, 647–654 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    R. Sadeghi, H. Karimi-Maleh, A. Bahari, M. Taghvi, A novel biosensor based on ZnO nanoparticles/1, 3-dipropylimida sodium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys. Chem. Liq. 51, 704–714 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    Y. Shi, Q. Zhang, T. Zhai et al., Localized surface plasmon resonance-enhanced label-free photoelectrochemical immunoassay by Au-MoS2 nanohybrid. Electrochim. Acta 271, 361–369 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    C. Li, M. Li, X. Bo et al., Facile synthesis of electrospinning Mn2O3-Fe2O3 loaded carbon fibers for electrocatalysis of hydrogen peroxide reduction and hydrazine oxidation. Electrochim. Acta 211, 255–264 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    S. Ameen, M. Akhtar, H. Shin, Manipulating the structure of polyaniline by exploiting redox chemistry: novel p-NiO/n-polyaniline/n-Si Schottky diode-based chemosensor for the electrochemical detection of hydrazinobenzene. Electrochim. Acta 215, 200–211 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    X. Bo, J. Bai, J. Ju, L. Guo, A sensitive amperometric sensor for hydrazine and hydrogen peroxide-based on palladium nanoparticles onion-like mesoporous carbon vesicle. Anal. Chim. Acta 675, 29–35 (2010)

    CAS  Article  Google Scholar 

  27. 27.

    X. Liu, Z. Yang, Q. Sheng, J. Zheng, one-pot synthesis of Au-Fe3o4-Go nanocomposites for enhanced electrochemical sensing of hydrazine. J. Electrochem. Soc. 165, 596–602 (2018)

    Article  CAS  Google Scholar 

  28. 28.

    J. Han, H. Xia, Y. Wu et al., Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy. Nanoscale 8, 7861–7865 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    Y. Peng, Zh. Tang, Y.P. Dong et al., Electrochemical detection of hydroquinone based on MoS2/reduced graphene oxide nanoparticles. J. Electroanal. Chem. 816, 38–44 (2018)

    CAS  Article  Google Scholar 

  30. 30.

    H. Zhang, Ch. Zhai, H. Gao et al., Highly efficient ethylene glycol electrocatalytic oxidation based on bimetallic Pt-Ni on 2D molybdenum disulfide reduced graphene oxide nanosheets. J. Colloid Interface Sci. 547, 102–110 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    K.J. Huang, J.Z. Zhang, Y.J. Liu, L.L. Wang, novel electrochemical sensing plot from based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles. Sens. Actuators B 194, 303–310 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    Y. Li, C.Y. Xu, P.A. Hu, L. Zhen, Carrier central of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 7, 7795–7804 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    S.X. Lee, H.N. Lim, L. Ibrahim et al., Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosens. Bioelectron. 89, 673–680 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    G. Vinodha, P.D. Shima, L. Cindrella, Mesoporous magnetite nanoparticles-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine. J. Mater. Sci. 54, 4073–4088 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    M. Kakkar, A. Sharma, K.H. Kim, A. Deep, Application of MoS2 modified screen-printed electrodes for highly sensitive detection of bovine serum albumin. Anal. Chim. Acta 939, 101–107 (2016)

    Article  CAS  Google Scholar 

  36. 36.

    A.S. Dhanjai, B. Tam, Y. Huang et al., MoS2 nanostructures for electrochemical sensing of multidisciplinary targets. Trends Anal. Chem. 102, 75–90 (2018)

    Article  CAS  Google Scholar 

  37. 37.

    Ch. Zhu, Zh. Zeng, H. Li et al., Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135, 5998–6001 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    F. Luan, Sh. Zhang, D. Chen et al., Cos2-decorated ionic liquid-functionalized graphene as a novel hydrazine electrochemical sensor. Talanta 182, 529–535 (2018)

    CAS  Article  Google Scholar 

  39. 39.

    M.J. Aghagoli, M.H. Beyki, F. Shemirani, Facile synthesis of FeO/MoS nanohybrid for solid-phase extraction of Ag(I) and Pb(II): kinetic, isotherm, and thermodynamic studies. Int. Environ. Anal. Chem. 97, 1328–1351 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    Y.F. Ning, P. Yan, Y.D. Chen et al., Development of a Pt modified microelectrode aimed for the monitoring of ammonium in solution. Environ. Anal. Chem. 97, 85–98 (2017)

    CAS  Article  Google Scholar 

  41. 41.

    L.X. Fang, J.T. Cao, K.J. Huang, A Sensitive electrochemical biosensor for specific DNA Sequence detection based on flower-like Vs2, graphene and Au nanoparticles signal amplification. J. Electroanal. Chem. 746, 1–8 (2015)

    CAS  Article  Google Scholar 

  42. 42.

    S. Kumar, N.L. Reddy, H.S. Kushwaha, A. Kumar et al., Efficient electron transfer across Zno-MoS-reduced graphene oxide heterojunction for enhanced sunlight-driven photocatalytic hydrogen evolution. ChemSus Chem. 10, 3588–3603 (2017)

    CAS  Article  Google Scholar 

  43. 43.

    O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509–519 (2010)

    CAS  Article  Google Scholar 

  44. 44.

    S. Daemi, A.A. Ashkaran, A. Bahari, S. Ghasemi, Fabrication of a gold nanocage /graphene nanoscale platform for electrocatalytic detection of hydrazine. Sens. Actuators B 245, 55–65 (2017)

    CAS  Article  Google Scholar 

  45. 45.

    Z. Xiaoli, J. Xu, K. Yan et al., Space-confined growth of MoS2 and graphene as an active catalyst for hydrogen evaluation reaction. Chem. Mater. 26, 2344–2353 (2014)

    Article  CAS  Google Scholar 

  46. 46.

    H.M.A. Amin, M.F. El-kady, N.F. Atta, A. Galal, Gold nanoparticles decorated graphene as a high-performance sensor for determination of trace hydrazine levels in water. Electro Anal. 30, 1757–1766 (2018)

    Article  CAS  Google Scholar 

  47. 47.

    S. Zhao, L.L. Wang, T.T. Wang et al., A high-performance hydrazine electrochemical sensor based on gold nanoparticles/single-walled carbon nanohorns composite film. Appl. Surf. Sci. 369, 36–42 (2016)

    CAS  Article  Google Scholar 

  48. 48.

    C. Karuppiah, S. Palanisamy, S. Chen et al., A novel and sensitive amperometric hydrazine sensor based on gold nanoparticles decorated graphite nanosheets modified screen-printed carbon electrode. Electrochim. Acta 139, 157–164 (2014)

    CAS  Article  Google Scholar 

  49. 49.

    F. Amiripour, N. Azizi, S. Ghasemi, Gold-Copper bimetallic nanoparticles supported on nano p zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine. Biosens. Bioelectron. 107, 111–117 (2018)

    CAS  Article  Google Scholar 

  50. 50.

    H. Wu, Sh. Zhou, Y. Wu et al., Ultrafine CuO nanoparticles isolated by ordered mesoporous carbon for catalysis and electroanalysis. J. Mater. Chem. 1, 14198–14205 (2013)

    CAS  Article  Google Scholar 

  51. 51.

    A.S. Kumar, P. Barathi, KCh. Pillai, In situ precipitation of nickel-hexacyanoferrate within multi-walled carbon nanotube, modified electrode and its selective hydrazine electrocatalysis in physiological pH. J. Electroanal. Chem. 654, 85–95 (2011)

    Article  CAS  Google Scholar 

  52. 52.

    Z. Yang, Q. Sheng, S. Zhang et al., One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Microchem. Acta 184, 2219–2226 (2017)

    CAS  Article  Google Scholar 

  53. 53.

    M. Afshari, M. Dinari, M.M. Momeni, The graphitic carbon nitride/ polyaniline/silver nanocomposites as a potential electrocatalyst for hydrazine detection. J. Electroanal. Chem. 833, 9–16 (2019)

    CAS  Article  Google Scholar 

  54. 54.

    Y. Pei, M. Hu, Y. Xia et al., Electrochemical preparation of pt nanoparticles modified nanoporous gold electrode with highly rough surface for efficient determination of hydrazine. Sens. Actuators B 304, 127416 (2020)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahsa Gharani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3.87 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gharani, M., Bahari, A. & Ghasemi, S. Preparation of MoS2-reduced graphene oxide/Au nanohybrid for electrochemical sensing of hydrazine. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05496-3

Download citation