Electrochemical performance of SnO2 rods and SnO2/rGO, SnO2/MWCNTs composite materials as an anode for lithium-ion battery application-A comparative study


Surfactant and organic solvents-based SnO2 rods and SnO2/rGO, SnO2/MWCNTs composite materials were synthesized by microwave-assisted hydrothermal process. Powder X-ray diffraction analysis revealed the rutile phase formation. Surface morphology of the prepared samples and their chemical compositions were investigated by SEM and EDS, respectively. Lithium ion batteries (LIBs) were fabricated from synthesized SnO2 rods and composites SnO2/rGO, SnO2/MWCNTs as anode materials and it revealed promising initial discharge capacity of 1426 mAh g−1 and 1575 mAh g−1, 1189 mAh g−1 respectively. Electrochemical studies showed that the discharge capacities retained even after 100th cycle were found to be 171 mAh g−1, 351 mAh g−1 and 214 mAh g−1 even at a high current density of 500 mA g−1, with high coulombic efficiency for SnO2 rods and SnO2/rGO, SnO2/MWCNTs composites, respectively. These findings are better than the commercially used graphite as anode material. Further, electrochemical impedance spectra of the fabricated LIBs having SnO2/rGO and SnO2/MWCNTs composites used as anode material showed less charge transfer resistance as compared to bare SnO2 rods. Due to low charge transfer resistance, improved electrical conductivity and the large surface area of rGO nanosheets, the SnO2/rGO composite exhibited better electrochemical performance when compared with the bare SnO2 rods and SnO2/MWCNTs composite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104, 4245–4270 (2004)

    CAS  Article  Google Scholar 

  2. 2.

    A.L. Mohana Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, Hybrid nanostructures for energy storage applications. Adv. Mat. 24, 5045–5064 (2012)

    Article  CAS  Google Scholar 

  3. 3.

    Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    B. Luo, S. Liu, L. Zhi, Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8, 630–646 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxide: a high-capacity lithium-ion-storage. Mater. Sci. 276, 1395–1397 (1997)

    CAS  Google Scholar 

  6. 6.

    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  Article  Google Scholar 

  7. 7.

    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    CAS  Article  Google Scholar 

  8. 8.

    X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nano-hybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29, 1–8 (2017)

    Google Scholar 

  9. 9.

    Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, A top-down strategy toward 3D carbon nano sheet frame works decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26, 7590–7598 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    Z.H. Li, T.P. Zhao, X.Y. Zhan, D.S. Gao, Q.Z. Xiao, G.T. Lei, High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta 55, 4594–4598 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    C. Yuan, H.B. Wu, Y. Xie, X.W. David Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    F.M. Courtel, H. Duncan, Y. Abu-Lebdeh, I.J. Davidson, High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J. Mater. Chem. 21, 10206–10218 (2011)

    CAS  Article  Google Scholar 

  13. 13.

    P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172, 379–387 (2007)

    CAS  Article  Google Scholar 

  14. 14.

    B.Y. Sharma, N. Sharma, G.V. Subba Rao, B.V.R. Chowdari, Nanophase ZnCo2O4 as a high performance anode material for Li-Ion batteries. Adv. Funct. Mater. 17, 2855–2861 (2007)

    CAS  Article  Google Scholar 

  15. 15.

    M.T. Demko et al., Mechanical homogenization of antimony, iron oxide, and carbon black composites for use in lithium ion batteries. Mater. Chem. Phys. 224, 376–383 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    X. Han, X. Han, L. Sun, P. Wang, M. Jin, X.-J. Wang, Facile preparation of hybrid anatase/rutile TiO2 nanorods with exposed (010) facets for lithium ion batteries. Mater. Chem. Phys. 171, 11–15 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    L. Zhang, H.B. Wu, X.W. David Lou, Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 4, 1300958–1300966 (2014)

    Article  CAS  Google Scholar 

  18. 18.

    N. Naresh, P. Jena, N. Satyanarayana, Facile synthesis of MoO3/rGO nanocomposite as anode materials for high performance lithium-ion battery applications. J. Alloys Compd. 810, 151920–151927 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277–281 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    H.B. Wu, J.S. Chen, H.H. Hng, X.W. David Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526–2542 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yang, Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 23, 3570–3576 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49, 133–139 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9, 1877–1893 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, M. Wu, Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435–1442 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    J. Ning, T. Jiang, K. Men, Q. Dai, D. Li, Y. Wei, B. Liu, G. Chen, B. Zou, G. Zou, Synthesis, characterizations, and applications in lithium ion batteries of hierarchical SnO2 nanocrystals. J. Phys. Chem. C 113, 14140–14144 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    X. Ye, W. Zhang, Q. Liu, S. Wang, Y. Yang, H. Wei, One-step synthesis of Ni-doped SnO2nanospheres with enhanced lithium ion storage performance. New J. Chem. 39, 130–136 (2014)

    Article  CAS  Google Scholar 

  27. 27.

    D.V. Szabo, G. Kilibarda, S. Schlabach, V. Trouillet, M. Bruns, Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J. Mater. Sci. 47, 4383 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    H. Kim et al., New insight into the reaction mechanism for exceptional capacity of ordered mesoporous SnO2 electrodes via synchrotron-based X-ray analysis. Chem. Mater. 26, 6361–6370 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    Y. Deng, C. Fang, G. Chen, The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. J. Power Sources 304, 81–101 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H.Y. Fan, L. Qi, A. Kushima, J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010)

    CAS  Article  Google Scholar 

  31. 31.

    J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, J.M. Tour, Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001–6006 (2013)

    CAS  Article  Google Scholar 

  32. 32.

    C. Zhong, J. Wang, Z. Chen, H. Liu, SnO2–graphene composite synthesized via an ultrafast and environmentally friendly microwave autoclave method and its use as a superior anode for lithium-ion batteries. J. Phys. Chem. C 115, 25115–25120 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    J. Cui, S. Yao, J.-Q. Huang, L. Qin, W.G. Chong, Z. Sadighi, J. Huang, Z. Wang, J.-K. Kim, Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Storage Mater. 9, 85–95 (2017)

    Article  Google Scholar 

  34. 34.

    Y. Dong, S. Liu, Y. Liu, Y. Tang, T. Yang, X. Wang, Z. Wang, Z. Zhao, J. Qiu, Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage. J. Mater. Chem. A 4, 17718–17725 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    S. Jiang, W. Yue, Z. Gao, Y. Ren, H. Ma, X. Zhao, Y. Liu, X. Yang, Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries. J. Mater. Sci. 48, 3870–3876 (2013)

    CAS  Article  Google Scholar 

  36. 36.

    Y. Wang, D.W. Su, C.Y. Wang, G.X. Wang, SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun. 29, 8–11 (2013)

    CAS  Article  Google Scholar 

  37. 37.

    M. OguzGuler, O. Cevher, T. Cetinkaya, U. Tocoglu, H. Akbulut, Nanocomposite anodes for lithium-ion batteries based on SnO2 on multiwalled carbon nanotubes. Int. J. Energy Res. 38, 487–498 (2014)

    Article  CAS  Google Scholar 

  38. 38.

    Y. Fu, R. Ma, Y. Shu, Z. Cao, X. Ma, Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater. Lett. 63, 1946–1948 (2009)

    CAS  Article  Google Scholar 

  39. 39.

    B.M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou, H.-K. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455–461 (2008)

    CAS  Article  Google Scholar 

  40. 40.

    J. Ye, H. Zhang, R. Yang, X. Li, L. Qi, Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6, 296–306 (2010)

    CAS  Article  Google Scholar 

  41. 41.

    H.-Q. Wang, G.-H. Yang, Y.-G. Huang, X.-H. Zhang, Z.-X. Yan, Q.-Y. Li, Electrochemical performance of SnO2/modified graphite composite material as anode of lithium ion battery. Mater. Chem. Phys. 167, 303–308 (2015)

    CAS  Article  Google Scholar 

  42. 42.

    Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

    CAS  Article  Google Scholar 

  43. 43.

    O. Lupan, L. Chow, G. Chai, H. Heinrich, S. Park, A. Schulte, Growth of tetragonal SnO2 microcubes and their characterization. J. Cryst. Growth 311, 152–155 (2008)

    CAS  Article  Google Scholar 

  44. 44.

    Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv. Mater. 15, 1754–1757 (2003)

    CAS  Article  Google Scholar 

  45. 45.

    O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, H. Heinrich, A rapid hydrothermal synthesis of rutile SnO2 nanowires. Mater. Sci. Eng. B 157, 101–104 (2009)

    CAS  Article  Google Scholar 

  46. 46.

    X. Xia, S. Li, X. Wang, J. Liu, Q. Wei, X. Zhang, Structures and properties of SnO2 nanofibers derived from two different polymer intermediates. J. Mater. Sci. 48, 3378–3385 (2013)

    CAS  Article  Google Scholar 

  47. 47.

    X. Huang, X. Zhou, L. Zhou, K. Qian, Y. Wang, Z. Liu, C. Yu, A facile one-step solvothermal synthesis of SnO2/graphene nanocomposite and its application as an anode material for lithium-ion batteries. Chem. Phys. Chem. 12(2), 278–281 (2011)

    CAS  Article  Google Scholar 

  48. 48.

    V. Subramanian, W.W. Burke, Z. Hongwei, W. Bingqing, Novel microwave synthesis of nanocrystalline SnO2 and its electrochemical properties. J. Phys. Chem. C 112, 4550–4556 (2008)

    CAS  Article  Google Scholar 

  49. 49.

    Y. Zhu, H. Guo, H. Zhai, C. Cao, Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 7, 2745–2753 (2015)

    CAS  Article  Google Scholar 

  50. 50.

    N. Naresh, D. Narsimulu, P. Jena, E.S. Srinadhu, N. Satyanarayana, Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries. J. Mater. Sci.: Mater. Electron. 29, 14723–14732 (2018)

    CAS  Google Scholar 

  51. 51.

    B.D. Boruah, A. Misra, Polyethylenimine mediated reduced graphene oxide based flexible paper for supercapacitor. Energy Storage Mater. 5, 103–110 (2016)

    Article  Google Scholar 

  52. 52.

    N. Srinivasan, S. Mitra, R. Bandyopadhyaya, Improved electrochemical performance of SnO2–mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Phys. Chem. Chem. Phys. 16, 6630–6640 (2014)

    CAS  Article  Google Scholar 

  53. 53.

    J. Yue, W. Wang, N. Wang, X. Yang, J. Feng, J. Yang, Y. Qian, Triple-walled SnO2@ N-doped carbon@ SnO2 nanotubes as an advanced anode material for lithium and sodium storage. J. Mater. Chem. A 3, 23194–23200 (2015)

    CAS  Article  Google Scholar 

  54. 54.

    R. Demir-Cakan, Y.S. Hu, M. Antonietti, J. Maier, M.M. Titirici, Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20, 1227–1229 (2008)

    CAS  Article  Google Scholar 

  55. 55.

    Z. Huang, H. Gao, Q. Wang, Y. Zhao, G. Li, Fabrication of amorphous SnO2@C nanofibers as anode for lithium-ion batteries. Mater. Lett. 186, 231–234 (2017)

    CAS  Article  Google Scholar 

  56. 56.

    G. Xing, Y. Wang, J. Wong, Y. Shi, Z. Huang, S. Li, H. Yang, Hybrid CuO/SnO2 nanocomposites: towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl. Phys. Lett. 105, 143905–143910 (2014)

    Article  CAS  Google Scholar 

  57. 57.

    X. Zhang, J. Liang, G. Gao, S. Ding, Z. Yang, W. Yu, B.Q. Li, The preparation of mesoporous SnO2 nanotubes by carbon nanofibers template and their lithium storage properties. Electrochim. Acta 98, 263–267 (2013)

    CAS  Article  Google Scholar 

  58. 58.

    H. Zhang, H. Song, X. Chen, J. Zhou, H. Zhang, Preparation and electrochemical performance of SnO2@carbon nanotube core–shell structure composites as anode material for lithium-ion batteries. Electrochim. Acta 59, 160–167 (2012)

    CAS  Article  Google Scholar 

  59. 59.

    J.Y. Eom, D.Y. Kim, H.S. Kwon, Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition. J. Power Sources 157, 507–514 (2006)

    CAS  Article  Google Scholar 

  60. 60.

    L. Hu, H. Zhong, X. Zheng, Y. Huang, P. Zhang, Q. Chen, CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2, 986–993 (2012)

    Article  CAS  Google Scholar 

  61. 61.

    D. Zhou, W.L. Song, X. Li, L.Z. Fan, Hierarchical porous reduced graphene oxide/SnO2 networks as highly stable anodes for lithium-ion batteries. Electrochim. Acta 207, 9–15 (2016)

    CAS  Article  Google Scholar 

  62. 62.

    P. Wu, N. Du, H. Zhang, J. Yu, Y. Qi, D. Yang, Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries. Nanoscale 3, 746–750 (2011)

    Article  Google Scholar 

  63. 63.

    C. Xu, J. Sun, L. Gao, Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J. Mater. Chem. 22, 975–979 (2012)

    CAS  Article  Google Scholar 

  64. 64.

    C. Li, W. Wei, S. Fang, H. Wang, Y. Zhang, Y. Gui, R. Chen, A novel CuO nanotube/SnO2 composite as the anode material for lithium ion Batteries. J. Power Sources 195, 2939–2944 (2010)

    CAS  Article  Google Scholar 

  65. 65.

    M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J. Mater. Chem. 21, 1673–1676 (2011)

    CAS  Article  Google Scholar 

  66. 66.

    D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T. Sham, X. Sun, Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries. J. Phys. Chem. C 116, 22149–22156 (2012)

    CAS  Article  Google Scholar 

  67. 67.

    H. Qiao, Z. Zheng, L. Zhang, L. Xiao, SnO2@C core-shellspheres: synthesis, characterization, and performance in reversible Li-ion storage. J. Mater. Sci. 43, 2778–27784 (2008)

    CAS  Article  Google Scholar 

Download references


This work is financially supported by the Odisha Higher Education Program for Excellence and Equity (OHEPEE), Higher Education Department, Government of Odisha, INDIA, Assisted by World Bank. NS gratefully acknowledges UGC, Govt. of INDIA for awarding BSR Faculty fellowship: No. F.18-1/2011(BSR), Date: 07-03-2019.

Author information



Corresponding authors

Correspondence to Paramananda Jena or R. Biswal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jena, P., Naresh, N., Satyanarayana, N. et al. Electrochemical performance of SnO2 rods and SnO2/rGO, SnO2/MWCNTs composite materials as an anode for lithium-ion battery application-A comparative study. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05478-5

Download citation