Synthesis and characterization of coralline CuBiS2 nanocomposite hybridized with reduced graphene oxide: a novel electrocatalyst for ultra-trace detection of insulin in blood serum sample

Abstract

Addressed herein, Copper Bismuth Sulfide nanocomposite (CuBiS2) in a coralline morphology was synthesized using a hydrothermal procedure. The nanocomposite was studied by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). A homogenous solution of CuBiS2 and reduced graphene oxide (RGO) led to the formation of CuBiS2/RGO nanohybrid that was applied to modify a glassy carbon electrode. The modified electrode was used for insulin detection in ultra-low levels using differential pulse voltammetry (DPV). The found data represented high electrocatalytic effects for the insulin oxidation process. The fabricated sensor sensitively detected insulin in a linear range of 0.5–59 nM. The limit of detection (LOD) was estimated as 0.047 nM as well appropriate repeatability (RSD = 1.8). Finally, the present sensor was successfully applied for monitoring ultra-trace amounts of insulin with good recoveries in human blood serum samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A.M. Gualandi-Signorini, G. Giorgi, Insulin formulations—a review. Eur. Rev. Med. Pharmacol. Sci. 5, 73–83 (2001)

    CAS  Google Scholar 

  2. 2.

    W. Tong, E.S. Yeung, Determination of insulin in single pancreatic cells by capillary electrophoresis and laser-induced native fluorescence. J. Chromatogr. B 685, 35–40 (1996). https://doi.org/10.1016/0378-4347(96)00090-4

    CAS  Article  Google Scholar 

  3. 3.

    H. Kasai, H. Hatakeyama, M. Ohno, N. Takahashi, Exocytosis in Islet β-Cells. The Islets of Langerhans (Springer, Dordrecht, 2010), pp. 305–338

    Google Scholar 

  4. 4.

    A. Arvinte, A.C. Westermann, A.M. Sesay, V. Virtanen, Reduced graphene oxide modified the interdigitated chain electrode for an insulin sensor. Sens. Actuator B: Chem. 150, 756–763 (2010). https://doi.org/10.1007/s10008-017-3544-0

    CAS  Article  Google Scholar 

  5. 5.

    M. Jaafariasl, E. Shams, M.K. Amini, Silica gel modified carbon paste electrode for electrochemical detection of insulin. Electrochim. Acta 56, 4390–4395 (2011). https://doi.org/10.1016/j.electacta.2010.12.052

    CAS  Article  Google Scholar 

  6. 6.

    E. Tomas, A. Zorzano, N.B. Ruderman, Exercise and insulin signaling: a historical perspective. J. Appl. Physiol. 93(2), 765–772 (2002). https://doi.org/10.1152/japplphysiol.00267.2002

    CAS  Article  Google Scholar 

  7. 7.

    K.G.M.M. Alberti, P.Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabetic Med 15, 539–553 (1998). https://doi.org/10.1002/(SICI)1096-9136(199807)15:7%3c539::AID-DIA668%3e3.0.CO;2-S

    CAS  Article  Google Scholar 

  8. 8.

    A. Kunkel, S. Guenter, C. Dette, H. Waetzig, Quantitation of insulin by capillary electrophoresis and high-performance liquid chromatography method comparison and validation. J. Chromatogr. A 781, 445–455 (1997). https://doi.org/10.1016/S0021-9673(97)00530-X

    CAS  Article  Google Scholar 

  9. 9.

    R. Schirhagl, U. Latif, D. Podlipna, H. Blumenstock, F.L. Dickert, Natural and biomimetic materials for the detection of insulin. Anal. Chem. 84, 3908–3913 (2012). https://doi.org/10.1021/ac201687b

    CAS  Article  Google Scholar 

  10. 10.

    C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013). https://doi.org/10.1039/C2RA22351A

    CAS  Article  Google Scholar 

  11. 11.

    H.K. Ortmeyer, N.L. Bodkin, B.C. Hansen, Relationship of skeletal muscle glucose 6-phosphate to glucose disposal rate and glycogen synthase activity in insulin-resistant and non-insulin-dependent diabetic rhesus monkeys. Diabetologia 37, 127–133 (1994). https://doi.org/10.1007/s001250050082

    CAS  Article  Google Scholar 

  12. 12.

    R. Dikow, C. Wasserhess, K. Zimmerer, L.P. Kihm, M. Schaier, V. Schwenger, S. Hardt, C. Tiefenbacher, H. Katus, M. Zeier, L.M. Gross, Effect of insulin and glucose infusion on myocardial infarction size in uraemic rats. Basic Res. Cardiol. 104(5), 571–579 (2009). https://doi.org/10.1007/s00395-009-0018-2

    CAS  Article  Google Scholar 

  13. 13.

    E. Schutte, H.J.L. Heerspink, H.L. Lutgers, S.J.L. Bakker, P. Vart, B.H.R. Wolffenbuttel, K. Umanath, J.B. Lewis, D. de Zeeuw, R.T. Gansevoort, Serum bicarbonate and kidney disease progression and cardiovascular outcome in patients with diabetic nephropathy: a post hoc analysis of the RENAAL (Reduction of End Points in Non–Insulin-Dependent Diabetes With the Angiotensin II Antagonist Losartan) Study and IDNT (Irbesartan Diabetic Nephropathy Trial). Am. J. Kidney Dis. 66(3), 450–458 (2015). https://doi.org/10.1053/j.ajkd.2015.03.032

    CAS  Article  Google Scholar 

  14. 14.

    T.L. van Belle, K.T. Coppieters, M.G. von Herrath, Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol. Rev. 91, 79–118 (2011). https://doi.org/10.1152/physrev.00003.2010

    CAS  Article  Google Scholar 

  15. 15.

    M.Y. Xu, X.L. Luo, J.J. Davis, The label free picomolar detection of insulin in blood serum. Biosens. Bioelectron. 39, 21–25 (2013). https://doi.org/10.1016/j.bios.2012.06.014

    CAS  Article  Google Scholar 

  16. 16.

    H. Liu, B.-Y. Cho, R. Strong, I.S. Krull, S. Cohen, K.C. Chan et al., Derivatization of peptides and small proteins for improved identification and detection in capillary zone electrophoresis (CZE). Anal. Chim. Acta 400, 181–209 (1999). https://doi.org/10.1016/S0003-2670(99)00615-7

    CAS  Article  Google Scholar 

  17. 17.

    H. Murayama, N. Matsuura, T. Kawamura, T. Maruyama, N. Kikuchi, T. Kobayashi, F. Nishibe, A. Nagata, A sensitive radioimmunoassay of insulin autoantibody: reduction of non-specific binding of [125I] insulin. J. Autoimmun. 26, 127–132 (2006). https://doi.org/10.1016/j.jaut.2005.11.003

    CAS  Article  Google Scholar 

  18. 18.

    I. Boukhobza, D.C. Crans, Application of HPLC to measure vanadium in environmental, biological and clinical matrices. Arab. J. Chem. 13(1), 1198–1228 (2020). https://doi.org/10.1016/j.arabjc.2017.10.003

    CAS  Article  Google Scholar 

  19. 19.

    J. Wang, X. Zhang, Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Anal. Chem. 73(4), 844–847 (2001). https://doi.org/10.1021/ac0009393

    CAS  Article  Google Scholar 

  20. 20.

    B. Xing, W.J. Zhu, X.P. Zheng, Y.Y. Zhu, Q. Wei, D. Wu, Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for insulin detection. Sens. Actuators B 265, 403–411 (2018). https://doi.org/10.1016/j.snb.2018.03.053

    CAS  Article  Google Scholar 

  21. 21.

    A. Arvinte, A.C. Westermann, A.M. Sesay, V. Virtanen, Electrocatalytic oxidation and determination of insulin at CNT-nickel–cobalt oxide modified electrode. Sens. Actuators B 150, 756–763 (2010). https://doi.org/10.1016/j.snb.2010.08.004

    CAS  Article  Google Scholar 

  22. 22.

    N. Amini, M.B. Gholivand, M. Shamsipur, Electrocatalytic determination of traces of insulin using a novel silica nanoparticles-Nafion modified glassy carbon electrode. J. Electroanal. Chem. 714–715, 70–75 (2014). https://doi.org/10.1016/j.jelechem.2013.12.015

    CAS  Article  Google Scholar 

  23. 23.

    A. Salimi, R. Hallaj, Cobalt oxide nanostructure-modified glassy carbon electrode as a highly sensitive flow injection amperometric sensor for the picomolar detection of insulin. J. Solid State Electrochem. 16, 1239–1246 (2012). https://doi.org/10.1007/s10008-011-1510-9

    CAS  Article  Google Scholar 

  24. 24.

    J. Wang, M. Musameh, Electrochemical detection of trace insulin at carbon-nanotube modified electrodes. Anal. Chim. Acta 511, 33–36 (2004). https://doi.org/10.1016/j.aca.2004.01.035

    CAS  Article  Google Scholar 

  25. 25.

    Y. Lin, L. Hu, L. Li, K. Wang, Facile synthesis of nickel hydroxide– graphene nanocomposites for insulin detection with enhanced electro-oxidation properties. RSC Adv. 4(86), 46208–46213 (2014). https://doi.org/10.1039/C4RA06648K

    CAS  Article  Google Scholar 

  26. 26.

    M. Pikulski, M. Gorski, Iridium-based electrocatalytic systems for the determination of insulin. Anal. Chem. 72, 2696–2702 (2000). https://doi.org/10.1021/ac000343f

    CAS  Article  Google Scholar 

  27. 27.

    L. Cheng, G.E. Pacey, J.A. Cox, Carbon electrodes modified with ruthenium metallodendrimer multilayers for the mediated oxidation of methionine and insulin at physiological pH. Anal. Chem. 73, 5607–5610 (2001). https://doi.org/10.1021/ac0105585

    CAS  Article  Google Scholar 

  28. 28.

    A. Salimi, M. Roushani, B. Haghighi, S. Soltanian, Amperometric detection of insulin at renewable sol–gel derived carbon ceramic electrode modified with nickel powder and potassium octacyanomolybdate(IV). Biosens. Bioelectron. 22, 220–226 (2006). https://doi.org/10.1016/j.bios.2005.12.022

    CAS  Article  Google Scholar 

  29. 29.

    J. Wang, T. Tangkuaram, S. Loyprasert, T. Vazquez-Alvarez, W. Veerasai, P. Kanatharana et al., Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes. Anal. Chim. Acta 581, 1–6 (2007). https://doi.org/10.1016/j.aca.2006.07.084

    CAS  Article  Google Scholar 

  30. 30.

    M. Zhang, C. Mullens, W. Gorski, Insulin oxidation and determination at carbon electrodes. Anal. Chem. 77, 6396–6401 (2005). https://doi.org/10.1021/ac0508752

    CAS  Article  Google Scholar 

  31. 31.

    Y.H. Wang, K.J. Huang, X. Wu, Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review. Biosens. Bioelectron. 97, 305–316 (2017). https://doi.org/10.1016/j.bios.2017.06.011

    CAS  Article  Google Scholar 

  32. 32.

    X. Lin, Y. Ni, S. Kokot, Electrochemical and bio-sensing platform based on a novel 3D Cu nano-flowers/layered MoS2 composite. Biosens. Bioelectron. 79, 685–692 (2016). https://doi.org/10.1016/j.bios.2015.12.072

    CAS  Article  Google Scholar 

  33. 33.

    Y. Lu, M.B. Lerner, Z.Q. John, J.J. Mitala Jr., J.H. Lim, B.M. Discher, A.T.C. Johnson, Graphene-protein bioelectronic devices with wavelength-dependent photoresponse. Appl. Phys. Lett. 100, 033110 (2012). https://doi.org/10.1063/1.3678024

    CAS  Article  Google Scholar 

  34. 34.

    J. Hovancová, I. Šišoláková, R. Oriňaková, A. Oriňak, Nanomaterial-based electrochemical sensors for detection of glucose and insulin. J. Solid State Electrochem. 21(8), 2147–2166 (2017). https://doi.org/10.1007/s10008-017-3544-0

    CAS  Article  Google Scholar 

  35. 35.

    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1152/physrev.00003.2010

    CAS  Article  Google Scholar 

  36. 36.

    P.S. Sonawane, P.A. Wani, L.A. Patil, T. Seth, Growth of CuBiS2 thin films by chemical bath deposition technique from an acidic bath. Mater. Chem. Phys. 84, 221–227 (2004). https://doi.org/10.1016/S0254-0584(03)00221-9

    CAS  Article  Google Scholar 

  37. 37.

    H. Zhang, D. Yang, X. Ma, Y. Ji, S. Li, D. Que, Self-assembly of CdS: from nanoparticles to nanorods and arrayed nanorod bundles. Mater. Chem. Phys. 93, 65–69 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.011

    CAS  Article  Google Scholar 

  38. 38.

    M.R. Loghman-Estarki, H. Bastami, F. Davar, Synthesis of one-dimensional MS (M = Zn, Cd, and Pb) nanostructure by MAA assisted hydrothermal method: A review. Polyhedron 127, 107–125 (2017). https://doi.org/10.1016/j.poly.2017.01.057

    CAS  Article  Google Scholar 

  39. 39.

    A. Noorbakhsh, A.I.K. Alnajar, Antifouling properties of reduced graphene oxide nanosheets for highly sensitive determination of insulin. Microchem. J. 129, 310–317 (2016). https://doi.org/10.1016/j.microc.2016.06.009

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Rohani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S.Z., Rohani, T., Amini, S. et al. Synthesis and characterization of coralline CuBiS2 nanocomposite hybridized with reduced graphene oxide: a novel electrocatalyst for ultra-trace detection of insulin in blood serum sample. J Mater Sci: Mater Electron 32, 7340–7348 (2021). https://doi.org/10.1007/s10854-021-05444-1

Download citation