Skip to main content

Advertisement

Log in

Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga2O3 is a semiconductor material with ultra-wide band gap (Eg = 4.9 eV), which has photocatalytic activity only under deep ultraviolet light irradiation (λ < 258 nm). In this study, Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers were prepared by electrospinning method. The results show that the composite nanofibers have strong photocatalytic activity and sensitive response under UV–visible light irradiation. According to the heterojunction energy band matching theory of S-scheme, the photogenerated electrons (e) of Ga2O3, ZnO, and WO3 are transferred from the valence band (VB) to the conduction band (CB), and photogenerated holes (h+) are generated in VB under the UV–visible light irradiation with sufficient energy. These factors (the internal electric field, band bending, and Coulomb attraction) are the driving forces to promote the useless e and h+ are eliminated through recombination. Consequently, the powerful e with strong reducing ability in the CB of Ga2O3 and the h+ with strong oxidizing ability in the VB of WO3 are preserved to engage in photocatalytic reactions. With Rhodamine B (Rh B) dye as the degradation target, the degradation efficiency of WO3, ZnO/WO3, and Ga2O3/ZnO/WO3 nanofibers were measured under UV–visible light irradiation for 120 min. The experimental results show that compared with WO3 and ZnO/WO3 nanofibers, Ga2O3/ZnO/WO3 composite nanofibers have the highest photocatalytic activity and excellent redox ability as photocatalyst. Besides, the response range of Ga2O3/ZnO/WO3 to the ultraviolet–visible spectrum is greatly expanded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.N. Chong, B. Jin, C.W.K. Chow et al., Water Res. 44, 2997 (2010). https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  Google Scholar 

  2. R. Molinari, A. Caruso, T. Poerio, Catal. Today 144, 81 (2009). https://doi.org/10.1016/j.cattod.2009.02.034

    Article  CAS  Google Scholar 

  3. R. Molinari, C. Lavorato, P. Argurio, Catal. Today 281, 144 (2017). https://doi.org/10.1016/j.cattod.2016.06.047

    Article  CAS  Google Scholar 

  4. K.K. Philippe, R. Timmers, R. van Grieken et al., Ind. Eng. Chem. Res. 55, 2952 (2016). https://doi.org/10.1021/acs.iecr.5b04927

    Article  CAS  Google Scholar 

  5. K.M. Zhang, Z.G. Wen, J. Environ. Manag. 88, 1249 (2008). https://doi.org/10.1016/j.jenvman.2007.06.019

    Article  Google Scholar 

  6. D. Bahnemann, Sol. Energy 77, 445 (2004). https://doi.org/10.1016/j.solener.2004.03.031

    Article  CAS  Google Scholar 

  7. M. Pelaez, N.T. Nolan, S.C. Pillai et al., Appl. Catal. B 125, 331 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  8. Y. Abdel-Maksoud, E. Imam, A. Ramadan, Catalysts 6, 138 (2016). https://doi.org/10.3390/catal6090138

    Article  CAS  Google Scholar 

  9. Z.C. Zhao, C.L. Yang, Q.T. Meng et al., Spectrochim. Acta A 211, 71 (2019). https://doi.org/10.1016/j.saa.2018.11.039

    Article  CAS  Google Scholar 

  10. R. Ito, M. Akatsuka, A. Ozawa et al., Bull. Chem. Soc. Jpn. 93, 694 (2020). https://doi.org/10.1246/bcsj.20190366

    Article  CAS  Google Scholar 

  11. K. Maeda, K. Domen, J. Phys. Chem. Lett. 1, 2655 (2010). https://doi.org/10.1021/jz1007966

    Article  CAS  Google Scholar 

  12. K.Z. Qi, B. Cheng, J.G. Yu et al., J. Alloys Compd. 727, 792 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  CAS  Google Scholar 

  13. Y.L. Lai, M. Meng, Y.F. Yu et al., Appl. Catal. B 105, 335 (2011). https://doi.org/10.1016/j.apcatb.2011.04.028

    Article  CAS  Google Scholar 

  14. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536 (2018). https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  15. S.G. Kumar, K.S.R.K. Rao, Appl. Surf. Sci. 391, 124 (2017). https://doi.org/10.1016/j.apsusc.2016.07.081

    Article  CAS  Google Scholar 

  16. A.K.L. Sajjad, S. Sajjad, A. Iqbal et al., Ceram. Int. 44, 9364 (2018). https://doi.org/10.1016/j.ceramint.2018.02.150

    Article  CAS  Google Scholar 

  17. J.Y. Tsao, S. Chowdhury, M.A. Hollis et al., Adv. Electron. Mater. 4, 1600501 (2018). https://doi.org/10.1002/aelm.201600501

    Article  CAS  Google Scholar 

  18. E. Chikoidze, A. Fellous, A. Perez-Tomas et al., Mater. Today Phys. 3, 118 (2017). https://doi.org/10.1016/j.mtphys.2017.10.002

    Article  Google Scholar 

  19. S. Nakagomi, T. Sai, Y. Kokubun, Sens. Actuators B 187, 413 (2013). https://doi.org/10.1016/j.snb.2013.01.020

    Article  CAS  Google Scholar 

  20. B. Zhao, F. Wang, H.Y. Chen et al., Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201700264

    Article  Google Scholar 

  21. B. Das, B. Das, N.S. Das et al., Microporous Mesoporous Mater. (2019). https://doi.org/10.1016/j.micromeso.2019.109600

    Article  Google Scholar 

  22. T. Shao, P.Y. Zhang, L. Jin et al., Appl. Catal. B 142, 654 (2013). https://doi.org/10.1016/j.apcatb.2013.05.074

    Article  CAS  Google Scholar 

  23. T. Shao, P.Y. Zhang, Z.M. Li et al., Chin. J. Catal. 34, 1551 (2013). https://doi.org/10.1016/s1872-2067(12)60612-3

    Article  CAS  Google Scholar 

  24. T. Yoshida, N. Yamamoto, T. Mizutani et al., Catal. Today 303, 320 (2018). https://doi.org/10.1016/j.cattod.2017.08.047

    Article  CAS  Google Scholar 

  25. S.A. Lee, J.Y. Hwang, K. Ahn et al., Thin Solid Films 527, 45 (2013). https://doi.org/10.1016/j.tsf.2012.12.016

    Article  CAS  Google Scholar 

  26. M.J. Li, Z.B. Yu, Y.P. Hou et al., Chem. Eng. J. 370, 1119 (2019). https://doi.org/10.1016/j.cej.2019.03.291

    Article  CAS  Google Scholar 

  27. V. Iliev, D. Tomova, L. Bilyarska, J. Photochem. Photobiol. A 351, 69 (2018). https://doi.org/10.1016/j.jphotochem.2017.10.022

    Article  CAS  Google Scholar 

  28. W.J. Li, D.Z. Li, S.G. Meng et al., Environ. Sci. Technol. 45, 2987 (2011). https://doi.org/10.1021/es103041f

    Article  CAS  Google Scholar 

  29. J. Saini, V.K. Garg, R.K. Gupta et al., J. Environ. Chem. Eng. 5, 884 (2017). https://doi.org/10.1016/j.jece.2017.01.012

    Article  CAS  Google Scholar 

  30. C. Gao, S.M. Chen, Y. Wang et al., Adv. Mater. (2018). https://doi.org/10.1002/adma.201704624

    Article  Google Scholar 

  31. H.M. Gong, X.Q. Hao, Z.L. Jin et al., New J. Chem. 43, 19159 (2019). https://doi.org/10.1039/c9nj04584h

    Article  CAS  Google Scholar 

  32. F.Y. Xu, K. Meng, B. Cheng et al., Nat. Commun. 11, 4613 (2020). https://doi.org/10.1038/s41467-020-18350-7

    Article  CAS  Google Scholar 

  33. T. Pan, D.D. Chen, W.C. Xu et al., J. Hazard. Mater. 393, 122366 (2020). https://doi.org/10.1016/j.jhazmat.2020.122366

    Article  CAS  Google Scholar 

  34. F. He, A.Y. Meng, B. Cheng et al., Chin. J. Catal. 41, 9 (2020). https://doi.org/10.1016/S1872-2067(19)63382-6

    Article  CAS  Google Scholar 

  35. Q. Xie, W.M. He, S.W. Liu et al., Chin. J. Catal. 41, 140 (2020). https://doi.org/10.1016/S1872-2067(19)63481-9

    Article  CAS  Google Scholar 

  36. H.N. Ge, F.Y. Xu, B. Cheng et al., ChemCatChem 11, 6301 (2019). https://doi.org/10.1002/cctc.201901486

    Article  CAS  Google Scholar 

  37. Q.L. Xu, L.Y. Zhang, B. Cheng et al., Chem 6, 1543 (2020). https://doi.org/10.1016/j.chempr.2020.06.010

    Article  CAS  Google Scholar 

  38. J. Liu, W. Lu, Q. Zhong et al., J. Colloid Interface Sci. 519, 255 (2018). https://doi.org/10.1016/j.jcis.2018.02.070

    Article  CAS  Google Scholar 

  39. B. Subash, B. Krishnakumar, M. Swaminathan et al., J. Mol. Catal. A 366, 54 (2013). https://doi.org/10.1016/j.molcata.2012.09.008

    Article  CAS  Google Scholar 

  40. X. Guo, H. Zhu, Q. Li, Appl. Catal. B 160, 408 (2014). https://doi.org/10.1016/j.apcatb.2014.05.047

    Article  CAS  Google Scholar 

  41. H. Liu, H.Y. Hao, J. Xing et al., J. Mater. Sci. 51, 5872 (2016). https://doi.org/10.1007/s10853-016-9888-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhang, H., Wang, R. et al. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity. J Mater Sci: Mater Electron 32, 7307–7318 (2021). https://doi.org/10.1007/s10854-021-05441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05441-4

Navigation