Influence of extra-addition of sulfur on the optical, electrical, and photoconductivity of the borate glasses containing MoO3

Abstract

The ternary sodium molybdenum borate glasses with extra-addition of sulfur element are prepared using the conventional melt quenching technique. The structural properties of these prepared glasses are investigated by XRD and FTIR spectroscopy. The XRD patterns confirm the amorphous nature and the absence of any crystallinity in the investigated glasses. The FTIR result shows that there is a conversion between the trigonal [BO3] to tetrahedral [BO4] units, depending on the amount of extra-added sulfur. This result can interpret the composition dependence of the electrical activation energy of the glasses. The study of electrical properties indicates that the investigated glasses are thermally activated in the temperature range of 360–340 K, due to the ionic conduction. The dependences of the optical bandgap and the Urbach energy on the sulfur content reveal the structural role of sulfur as a reducing agent. The most important feature of these glasses is that they exhibit the photoconductivity phenomena with high photosensitivity, which makes them suitable for applications of solar cells. The photoconductivity of the investigated glasses comes from the electron hopping between Mo5+ and Mo6+ ions, which can be motivated by addition of sulfur. Finally, the differential lifetime can be calculated using the transient photoconductivity measurements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    A.M. Ibrahim, Mater. Chem. Phys. 252, 123237 (2020). https://doi.org/10.1016/j.matchemphys.2020.123237

    CAS  Article  Google Scholar 

  2. 2.

    A.M. Ibrahim, Chin. J. Phys. 68, 919 (2020). https://doi.org/10.1016/j.cjph.2020.07.013

    CAS  Article  Google Scholar 

  3. 3.

    M. Zagrai, M. Unguresan, S. Rada, J. Zhang, M. Pica, E. Culea, J. Non-Cryst. Solids 546, 120259 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120259

    CAS  Article  Google Scholar 

  4. 4.

    N. Pujari, K. Birampally, A. Edukondalu, C.P. Vardhani, J. Phys. Chem. Solids 148, 109627 (2021). https://doi.org/10.1016/j.jpcs.2020.109627

    CAS  Article  Google Scholar 

  5. 5.

    P. Narwal, M.S. Dahiya, A. Agarwal, A. Hooda, S. Khasa, J. Lumin. 209, 121–128 (2019). https://doi.org/10.1016/j.jlumin.2019.01.042

    CAS  Article  Google Scholar 

  6. 6.

    A.M. Ibrahim, Y.H. Elbashar, A.M. Badr, H.A. Elshaikh, A.G. Mostafa, J. Microw. Power Electromagn. Energy 51, 71 (2017). https://doi.org/10.1080/08327823.2017.1291069

    Article  Google Scholar 

  7. 7.

    A.M. Ibrahim, A.M. Badr, H.A. Elshaikh, A.G. Mostafa, Y.H. Elbashar, Silicon 10, 1265 (2017). https://doi.org/10.1007/s12633-017-9599-9

    CAS  Article  Google Scholar 

  8. 8.

    D.A. McKeown, I.S. Muller, H. Gan, I.L. Pegg, W.C. Stolte, J. Non-Cryst. Solids 333, 74 (2004). https://doi.org/10.1016/j.jnoncrysol.2003.09.035

    CAS  Article  Google Scholar 

  9. 9.

    I. Kashif, S.M. Salem, A.A. Soliman et al., J. Phys. Chem. Solids 67, 2370 (2006). https://doi.org/10.1016/j.jpcs.2006.06.011

    CAS  Article  Google Scholar 

  10. 10.

    D. Manara, A. Grandjean, O. Pinet, J.L. Dussossoy, D.R. Neuville, J. Non-Cryst. Solids 353, 12 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.09.041

    CAS  Article  Google Scholar 

  11. 11.

    M.S. Dahiya, S. Dalal, S. Khasa, J. Non-Cryst. Solids 485, 24 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.024

    CAS  Article  Google Scholar 

  12. 12.

    D. Singh, S. Kumar, R. Thangaraj, Prog. Nat. Sci.: Mater. Int. 22, 386 (2012). https://doi.org/10.1016/j.pnsc.2012.05.003

    Article  Google Scholar 

  13. 13.

    N.S. Prabhu, K.R. Vighnesh, S. Bhardwaj, A.M. Awasthi, G. Lakshminarayana, S.D. Kamath, J. Alloy. Compd. 832, 154996 (2020). https://doi.org/10.1016/j.jallcom.2020.154996

    CAS  Article  Google Scholar 

  14. 14.

    H.Y. Morshidy, M.S. Sadeq, A.R. Mohamed, M.M. El-Okr, J. Non-Cryst. Solids 528, 119749 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119749

    CAS  Article  Google Scholar 

  15. 15.

    M.G. Moustafa, A. Shreif, S. Ghalab, Mater. Chem. Phys. 254, 123464 (2020). https://doi.org/10.1016/j.matchemphys.2020.123464

    CAS  Article  Google Scholar 

  16. 16.

    G. Lakshminarayana, K.R. Vighnesh, N.S. Prabhu et al., Opt. Mater. 108, 110186 (2020). https://doi.org/10.1016/j.optmat.2020.110186

    CAS  Article  Google Scholar 

  17. 17.

    H.A. El Batal, E.M. Abou Hussein, N.A. El Alaily, F.M. EzzEldin, J. Non-Cryst. Solids 528, 119733 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119733

    CAS  Article  Google Scholar 

  18. 18.

    A. Bhogi, P. Kistaiah, Opt. Mater. 109, 110345 (2020). https://doi.org/10.1016/j.optmat.2020.110345

    CAS  Article  Google Scholar 

  19. 19.

    B. Lakshmana Rao, K. Jyothi Raju, S.V.G.V.A. Prasad, Mater Today: Proc. 5, 26298 (2018). https://doi.org/10.1016/j.matpr.2018.08.080

    CAS  Article  Google Scholar 

  20. 20.

    M. Eigen, in Structural Chemistry of Glasses, ed. by K.J. Rao (Elsevier Science Ltd, Oxford, 2002)

  21. 21.

    J. Tauc, R. Grigorovici, A. Vancu, physica status solidi (b) 15, 627 (1966)

    CAS  Article  Google Scholar 

  22. 22.

    M. Purnima, S. Stalin, A. Edukondalu, M.A. Samee, S.K. Ahmmad, S. Rahman, Chin. J. Phys. 66, 517 (2020). https://doi.org/10.1016/j.cjph.2020.05.031

    CAS  Article  Google Scholar 

  23. 23.

    S. Yusub, P. Srinivasa Rao, D. Krishna Rao, J. Alloys Compd. 663, 708 (2016). https://doi.org/10.1016/j.jallcom.2015.12.147

    CAS  Article  Google Scholar 

  24. 24.

    M. Vijayakumar, K. Mahesvaran, D.K. Patel, S. Arunkumar, K. Marimuthu, Opt. Mater. 37, 695 (2014). https://doi.org/10.1016/j.optmat.2014.08.015

    CAS  Article  Google Scholar 

  25. 25.

    N. Mott, E. Davis, (Oxford, 1979)

  26. 26.

    S.S. Gundale, V.V. Behare, A.V. Deshpande, Solid State Ion. 298, 57 (2016). https://doi.org/10.1016/j.ssi.2016.11.002

    CAS  Article  Google Scholar 

  27. 27.

    S. Yusub, C. Rajyasree, A. Ramesh Babu, P.M. Vinaya Teja, D. Krishna Rao, J. Non-Cryst. Solids 364, 62 (2013). https://doi.org/10.1016/j.jnoncrysol.2012.12.045

    CAS  Article  Google Scholar 

  28. 28.

    A. Ciżman, E. Rysiakiewicz-Pasek, T. Antropova, M. Krupiński, O.A. Pshenko, A. Zarzycki, J. Non-Cryst. Solids 531, 119847 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119847

    CAS  Article  Google Scholar 

  29. 29.

    S.B. Kolavekar, N.H. Ayachit, Mater. Chem. Phys. 257, 123796 (2021). https://doi.org/10.1016/j.matchemphys.2020.123796

    CAS  Article  Google Scholar 

  30. 30.

    G.P. Singh, J. Singh, P. Kaur et al., J. Mater. Res. Technol. 9, 14425 (2020)

    CAS  Article  Google Scholar 

  31. 31.

    M.A. Ghauri, S.A. Siddiqi, M.G.B. Ashiq, Glass Phys. Chem 40, 151 (2014). https://doi.org/10.1134/s1087659614020060

    CAS  Article  Google Scholar 

  32. 32.

    N. Chaudhary, A.A. Bahishti, M. Zulfequar, Phys. B 407, 2267 (2012). https://doi.org/10.1016/j.physb.2012.03.012

    CAS  Article  Google Scholar 

  33. 33.

    I.M. Ashraf, A.A. El-Zahhar, Results Phys. 11, 842 (2018). https://doi.org/10.1016/j.rinp.2018.10.048

    Article  Google Scholar 

  34. 34.

    K.A. Aly, A.M. Abd Elnaeim, N. Afify, A.M. Abousehly, J. Non-Cryst. Solids 358, 2759 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.06.029

    CAS  Article  Google Scholar 

  35. 35.

    W. Fuhs, D. Meyer, physica status solidi (a) 24, 275 (1974)

    CAS  Article  Google Scholar 

  36. 36.

    A.I. Khudiar, M. Zulfequar, Z.H. Khan, Mater. Sci. Semicond. Process. 16, 1791 (2013). https://doi.org/10.1016/j.mssp.2013.06.019

    CAS  Article  Google Scholar 

  37. 37.

    M. Shkir, I.M. Ashraf, S. AlFaify, Phys. Scr. 94, 025801 (2019). https://doi.org/10.1088/1402-4896/aaf55a

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from Taif University Researchers Supporting Project Number (TURSP-2020/264), Taif University, Taif, Saudi Arabia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali M. Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.M., Alkhammash, H.I. Influence of extra-addition of sulfur on the optical, electrical, and photoconductivity of the borate glasses containing MoO3. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05440-5

Download citation