Plasticity enhancement of nano-Ag sintered joint based on metal foam


Metal foam with excellent ductility was added into nano-Ag sintered joint to obtain the composite sintered joint with a sandwich structure of sintered Ag/metal foam/sintered Ag. The microstructure, shear behavior and fracture morphology of the composite sintered joint were investigated in this study. Experimental results indicate that the addition of ductile metal foam enhances the plasticity of composite sintered joint. As the number of pores of Cu foam increased from 110 to 500 per inch, the shear strength increased from 8.28 to 11.26 MPa. The composite sintered joint with 110ppi (pores per inch) Ni foam showed a higher shear strength than the other composite sintered joints did because of the higher Young’s modules and shear modules of Ni foam. In the Ni foam@nano-Ag composite sintered joint, cracks appeared at the interface between the metal foam and the nano-Ag sintered structure because of the mismatch of coefficient of thermal expansion (CTE). Compared with the Ni foam, the addition of Cu foam effectively depressed the generation of cracks at the interface between the metal foam and the nano-Ag sintered structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    M. Gleissner, M.M. Bakran, I.E.E.E.T. Ind, Appl. 52(2), 1785 (2016)

    Google Scholar 

  2. 2.

    Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, F. Sun, IEEE T. Device Mat. Re. 18(2), 240 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    K.S. Siow, J. Alloy. Compd. 514, 6 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    J.L. Marchesini, P.O. Jeannin, Y. Avenas, J. Delaine, C. Buttay, R. Riva, I.E.E.E.T. Ind, Appl. 53(1), 362 (2017)

    CAS  Google Scholar 

  5. 5.

    S.T. Chua, K.S. Siow, J. Alloy. Compd. 687, 486 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    J. Fan, D. Xu, H. Zhang, C. Qian, X. Fan, G. Zhang, I.E.E.E.T. Comp, Pack. Man. 10(7), 1101 (2020)

    CAS  Google Scholar 

  7. 7.

    H. Zhang, Y. Liu, L. Wang, J. Fan, X. Fan, F. Sun, G. Zhang, Microelectron. Reliab. 81(81), 143 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, F. Sun, Solder. Surf. Mt. Tech. 31(1), 20 (2019)

    Article  Google Scholar 

  9. 9.

    C. Chen, K. Suganuma, Mater. Design 162, 311 (2018)

    Article  Google Scholar 

  10. 10.

    G. Huang, H. Xiao, S. Fu, Nanoscale 6, 8495 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    M. Li, Y. Xiao, Z. Zhang, J. Yu, A.C.S. Appl, Mater. Inter. 7(17), 9157 (2015)

    CAS  Article  Google Scholar 

  12. 12.

    W. Zhou, Z. Zheng, C. Wang, Z. Wang, R. An, A.C.S. Appl, Mater. Inter. 9(5), 4798 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    S. Wang, M. Li, H. Ji, C. Wang, Scripta Mater. 69(11–12), 789 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    H. Zhang, C. Chen, J. Jiu, S. Nagao, K. Suganuma, J. Mater. Sci-Mater. El. 29, 8854 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    A.A Wereszczak, D.J. Vuono, H. Wang, M.K. Ferber, Z. Liang. (2012)

  16. 16.

    C. Qian, Z. Sun, J. Fan, Y. Ren, B. Sun, Q. Feng, D. Yang, Z. Wang, Mater. Design 196, 10909 (2020)

    Google Scholar 

  17. 17.

    V.M. Sharma, S.K. Pal, V. Racherla, Mater. Manuf. Process. 35(15), 1717 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    D.G. Kang, D.K. Lee, J.M. Choi, D.K. Shin, M.S. Kim, Rene. Energy 1576, 931 (2020)

    Article  Google Scholar 

  19. 19.

    M. Ghaneifar, H. Arasteh, R. Mashayekhi, A. Rahbari, R.B. Mahani, P. Taleizadehsardari, Appl. Therm. Eng. 181, 115961 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    Q. Zhang, W.L. Bai, C.Y. Sun, X. Liu, K.X. Wang, J.S. Chen, Chem. Eng. J. 405, 127022 (2020)

    Article  Google Scholar 

  21. 21.

    H. Zhang, F. Sun, Y. Liu, Mater. Lett. 241, 108 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Su, C. Hang, H. Chen, X. Xie, J. Ma, M. Li, Microelectron. Eng. 214, 60 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    H. He, S. Huang, Y. Ye, Y. Xiao, Z. Zhang, M. Li, R. Goodall, J. Alloy. Compd. 845, 156240 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    Y. Liu, Z. Li, H. Zhang, F. Sun, J. Mater. Sci. 30, 15795 (2019)

    CAS  Google Scholar 

  25. 25.

    D.E. Gray, American Institute of Physics Handbook, 3nd edn. (McGraw Hill Book Company, USA, 1972), section 4, pp. 123–130

  26. 26.

    J.K. Luo, A.J. Flewitt, S.M. Spearing, N.A. Fleck, W.I. Miline, Mater. Lett. 58(18–18), 2306 (2004)

    CAS  Article  Google Scholar 

  27. 27.

    T. Ishizaki, D. Miura, A. Kuno, K. Hasegawa, M. Usui, Y. Yamada, Microelectron. Reliab. 76–77, 405 (2017)

    Article  Google Scholar 

  28. 28.

    M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide, 1st edn. (Butterworth-Heinemann, New York, 2000), p. 52

    Google Scholar 

  29. 29.

    M. Wang, Y. Mei, X. Li, R. Burgos, D. Boroyevich, G.Q. Lu, IEEE T. Power Electr. 34(8), 7121 (2019)

    Article  Google Scholar 

Download references


This work is supported by National Natural Science Foundation of China (No. 51604090) and Natural Science Foundation of Heilongjiang Province (No. E2017050).

Author information



Corresponding author

Correspondence to Yuxiong Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Z., Zhang, H. et al. Plasticity enhancement of nano-Ag sintered joint based on metal foam. J Mater Sci: Mater Electron (2021).

Download citation